We propose a procedure for the polarity assessment in reflection seismic data based on a Neural Network approach. The algorithm is based on a fully 1D approach, which does not require any input besides the seismic data since the necessary parameters are all automatically estimated. An added benefit is that the prediction has an associated probability, which automatically quantifies the reliability of the results. We tested the proposed procedure on synthetic and real reflection seismic data sets. The algorithm is able to correctly extract the seismic horizons also in case of complex conditions, such as along the flanks of salt domes, and is able to track polarity inversions.
Polarity assessment of reflection seismic data: a Deep Learning approach
Roncoroni, G
;Forte, E;Bortolussi, L;Pipan, M
2022-01-01
Abstract
We propose a procedure for the polarity assessment in reflection seismic data based on a Neural Network approach. The algorithm is based on a fully 1D approach, which does not require any input besides the seismic data since the necessary parameters are all automatically estimated. An added benefit is that the prediction has an associated probability, which automatically quantifies the reliability of the results. We tested the proposed procedure on synthetic and real reflection seismic data sets. The algorithm is able to correctly extract the seismic horizons also in case of complex conditions, such as along the flanks of salt domes, and is able to track polarity inversions.File | Dimensione | Formato | |
---|---|---|---|
bgo00409_Roncoroni.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
4.95 MB
Formato
Adobe PDF
|
4.95 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.