Nowadays, electrochemistry has a considerable technological impact, involving fuel cells, super capacitors and batteries. These devices are based on complex architectures, which complicates monitoring their evolution in situ under operating conditions to reveal the reasons for reduced lifetime and performances. Here, we present a design of a multipurpose electrochemical cell for grazing incidence small and wide angle X-ray scattering (GISAXS and GIWAXS) where the environment for operating conditions can be recreated. We focus on proton exchange membrane fuel cells (PEMFCs) which operational conditions are simulated by means of potentiodynamic-based accelerated stress tests, applied to a thin film of Pt nanoparticles representing a model system of a benchmark catalyst. Two different upper potentials are used to mimic fuel cell operating conditions: at 1.0 V RHE the catalyst film preserves its initial morphology, while at 1.5 V RHE (simulating fuel cell start-up/shut-down cycles) significant coarsening has been observed. The initial dimension of the Pt particles of 4.0 nm increases to 8.7 nm due to the predominant process of coalescence and final Ostwald ripening. In parallel, the distance between the particles increases, the catalyst film (9 nm thick) becomes thinner at first and exhibit a higher roughness at the end.

In situ electrochemical grazing incidence small angle X-ray scattering: From the design of an electrochemical cell to an exemplary study of fuel cell catalyst degradation

Marco Bogar;
2020-01-01

Abstract

Nowadays, electrochemistry has a considerable technological impact, involving fuel cells, super capacitors and batteries. These devices are based on complex architectures, which complicates monitoring their evolution in situ under operating conditions to reveal the reasons for reduced lifetime and performances. Here, we present a design of a multipurpose electrochemical cell for grazing incidence small and wide angle X-ray scattering (GISAXS and GIWAXS) where the environment for operating conditions can be recreated. We focus on proton exchange membrane fuel cells (PEMFCs) which operational conditions are simulated by means of potentiodynamic-based accelerated stress tests, applied to a thin film of Pt nanoparticles representing a model system of a benchmark catalyst. Two different upper potentials are used to mimic fuel cell operating conditions: at 1.0 V RHE the catalyst film preserves its initial morphology, while at 1.5 V RHE (simulating fuel cell start-up/shut-down cycles) significant coarsening has been observed. The initial dimension of the Pt particles of 4.0 nm increases to 8.7 nm due to the predominant process of coalescence and final Ostwald ripening. In parallel, the distance between the particles increases, the catalyst film (9 nm thick) becomes thinner at first and exhibit a higher roughness at the end.
2020
Pubblicato
ttps://www.sciencedirect.com/science/article/pii/S0378775320313276
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0378775320313276-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3036920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact