Background Voice disorders are related to both modest and severe health problems, including discomfort, pain, difficulty speaking, dysphagia and also cancer. Widely adopted worldwide, the combined invasive and subjective diagnosis of voice disorders is troublesome and error-prone. Contrarily, acoustic-based digital assessment allows for a non-intrusive and objective examination, stimulating the applications of computer-based tools. Objective Consequently, this work describes a novel algorithm to investigate speech pathologies from the sounds of sustained vowels, particularly exploring a potential gap: the classification of co-existent issues for which the major phonic symptom is the same, implying in similar inter-class features. Method By using the concepts of signal energy (SE), zero-crossing rates (ZCRs) and signal entropy (SH), which provide a joint time-frequency-information map, the proposed approach classifies voice signals based on the discriminative paraconsistent machine (DPM), allowing for the application of paraconsistency to treat indefinitions and contradictions. Results An accuracy level of 95% was obtained under a subset of voices from the Saarbrucken voice database (SVD), with just a modest training. In complement, the proposed approach offers wider possibilities in contrast to current state-of-the-art systems, allowing for the inputs to be mapped into the paraconsistent plane in such a way that intermediary states can be found. Conclusion Different from current algorithms, our technique focuses on a particular problem in the field of speech pathology detection (SPD), not yet explored in detail, proposing a way to successfully solve it. Furthermore, the results we obtained stimulate broaden studies involving speech data inconsistencies whilst providing a valid contribution
Acoustic investigation of speech pathologies based on the discriminative paraconsistent machine (DPM)
BARBON JUNIOR S;
2020-01-01
Abstract
Background Voice disorders are related to both modest and severe health problems, including discomfort, pain, difficulty speaking, dysphagia and also cancer. Widely adopted worldwide, the combined invasive and subjective diagnosis of voice disorders is troublesome and error-prone. Contrarily, acoustic-based digital assessment allows for a non-intrusive and objective examination, stimulating the applications of computer-based tools. Objective Consequently, this work describes a novel algorithm to investigate speech pathologies from the sounds of sustained vowels, particularly exploring a potential gap: the classification of co-existent issues for which the major phonic symptom is the same, implying in similar inter-class features. Method By using the concepts of signal energy (SE), zero-crossing rates (ZCRs) and signal entropy (SH), which provide a joint time-frequency-information map, the proposed approach classifies voice signals based on the discriminative paraconsistent machine (DPM), allowing for the application of paraconsistency to treat indefinitions and contradictions. Results An accuracy level of 95% was obtained under a subset of voices from the Saarbrucken voice database (SVD), with just a modest training. In complement, the proposed approach offers wider possibilities in contrast to current state-of-the-art systems, allowing for the inputs to be mapped into the paraconsistent plane in such a way that intermediary states can be found. Conclusion Different from current algorithms, our technique focuses on a particular problem in the field of speech pathology detection (SPD), not yet explored in detail, proposing a way to successfully solve it. Furthermore, the results we obtained stimulate broaden studies involving speech data inconsistencies whilst providing a valid contributionFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S174680941930196X-main.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S174680941930196X-main-Post_print.pdf
Open Access dal 21/08/2021
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.