The continuous spontaneous localization (CSL) model is an alternative formulation of quantum mechanics, which introduces a noise-coupled nonlinearly to the wave function to account for its collapse. We consider CSL effects on quantum computers made of superconducting transmon qubits. As a direct effect CSL reduces quantum superpositions of the computational basis states of the qubits: we show the reduction rate to be negligibly small. However, an indirect effect of CSL, dissipation induced by the noise, also leads transmon qubits to decohere, by generating additional quasiparticles. Since the decoherence rate of transmon qubits depends on the quasiparticle density, by computing their generation rate induced by CSL, we can estimate the corresponding quasiparticle density and thus the limit set by CSL on the performances of transmon quantum computers. We show that CSL could spoil the quantum computation of practical algorithms on large devices. We further explore the possibility of testing CSL effects on superconducting devices.

Possible limits on superconducting quantum computers from spontaneous wave-function collapse models

Vischi, M
Membro del Collaboration Group
;
Ferialdi, L
Membro del Collaboration Group
;
Trombettoni, A
Membro del Collaboration Group
;
Bassi, A
Membro del Collaboration Group
2022-01-01

Abstract

The continuous spontaneous localization (CSL) model is an alternative formulation of quantum mechanics, which introduces a noise-coupled nonlinearly to the wave function to account for its collapse. We consider CSL effects on quantum computers made of superconducting transmon qubits. As a direct effect CSL reduces quantum superpositions of the computational basis states of the qubits: we show the reduction rate to be negligibly small. However, an indirect effect of CSL, dissipation induced by the noise, also leads transmon qubits to decohere, by generating additional quasiparticles. Since the decoherence rate of transmon qubits depends on the quasiparticle density, by computing their generation rate induced by CSL, we can estimate the corresponding quasiparticle density and thus the limit set by CSL on the performances of transmon quantum computers. We show that CSL could spoil the quantum computation of practical algorithms on large devices. We further explore the possibility of testing CSL effects on superconducting devices.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.106.174506.pdf

accesso aperto

Descrizione: File Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 625.09 kB
Formato Adobe PDF
625.09 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact