P systems with active membranes are a variant of P systems where membranes can be created by division of existing membranes, thus creating an exponential amount of resources in a polynomial number of steps. Time and space complexity classes for active membrane systems have been introduced, to characterize classes of problems that can be solved by different membrane systems making use of different resources. In particular, space complexity classes introduced initially considered a hypothetical real implementation by means of biochemical materials, assuming that every single object or membrane requires some constant physical space (corresponding to unary notation). A different approach considered implementation of P systems in silico, allowing to store the multiplicity of each object in each membrane using binary numbers. In both cases, the elements contributing to the definition of the space required by a system (namely, the total number of membranes, the total number of objects, the types of different membranes, and the types of different objects) was considered as a whole. In this paper, we consider a different definition for space complexity classes in the framework of P systems, where each of the previous elements is considered independently. We review the principal results related to the solution of different computationally hard problems presented in the literature, highlighting the requirement of every single resource in each solution. A discussion concerning possible alternative solutions requiring different resources is presented.

Evaluating space measures in P systems

Manzoni, L;
2022-01-01

Abstract

P systems with active membranes are a variant of P systems where membranes can be created by division of existing membranes, thus creating an exponential amount of resources in a polynomial number of steps. Time and space complexity classes for active membrane systems have been introduced, to characterize classes of problems that can be solved by different membrane systems making use of different resources. In particular, space complexity classes introduced initially considered a hypothetical real implementation by means of biochemical materials, assuming that every single object or membrane requires some constant physical space (corresponding to unary notation). A different approach considered implementation of P systems in silico, allowing to store the multiplicity of each object in each membrane using binary numbers. In both cases, the elements contributing to the definition of the space required by a system (namely, the total number of membranes, the total number of objects, the types of different membranes, and the types of different objects) was considered as a whole. In this paper, we consider a different definition for space complexity classes in the framework of P systems, where each of the previous elements is considered independently. We review the principal results related to the solution of different computationally hard problems presented in the literature, highlighting the requirement of every single resource in each solution. A discussion concerning possible alternative solutions requiring different resources is presented.
Pubblicato
https://link.springer.com/article/10.1007/s41965-022-00106-5
File in questo prodotto:
File Dimensione Formato  
s41965-022-00106-5.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact