We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey. The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analyzed in the context of the Λ CDM model, varying five cosmological parameters and 19 nuisance parameters modeling astrophysical and measurement systematics. Our modeling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7% measurement of the amplitude of fluctuations parameter S8≡σ8(Ωm/0.3 )0.5=0.784 ±0.013 . The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the Λ CDM model. The addition of the third moment improves the constraints on S8 and Ωm by ∼15 % and ∼25 % compared to an analysis that only uses second moments. We compare our results with Planck constraints from the cosmic microwave background, finding a 2.2 - 2.8 σ tension in the full parameter space, depending on the combination of moments considered. The third moment, independently, is in 2.8 σ tension with Planck, and thus provides a cross-check on the analyses of 2-point correlations....

Dark Energy Survey Year 3 results: Cosmology with moments of weak lensing mass maps

Costanzi, M.;
2022-01-01

Abstract

We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey. The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analyzed in the context of the Λ CDM model, varying five cosmological parameters and 19 nuisance parameters modeling astrophysical and measurement systematics. Our modeling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7% measurement of the amplitude of fluctuations parameter S8≡σ8(Ωm/0.3 )0.5=0.784 ±0.013 . The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the Λ CDM model. The addition of the third moment improves the constraints on S8 and Ωm by ∼15 % and ∼25 % compared to an analysis that only uses second moments. We compare our results with Planck constraints from the cosmic microwave background, finding a 2.2 - 2.8 σ tension in the full parameter space, depending on the combination of moments considered. The third moment, independently, is in 2.8 σ tension with Planck, and thus provides a cross-check on the analyses of 2-point correlations....
2022
Pubblicato
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.083509
File in questo prodotto:
File Dimensione Formato  
PhysRevD.106.083509.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact