Lithium-rich layered oxides (LRLOs) are opening unexplored frontiers for high-capacity/high-voltage positive electrodes in Li-ion batteries (LIBs) to meet the challenges of green and safe transportation as well as cheap and sustainable stationary energy storage from renewable sources. LRLOs exploit the extra lithiation provided by the Li1.2TM0.8O2 stoichiometries (TM = a blend of transition metals with a moderate cobalt content) achievable by a layered structure to disclose specific capacities beyond 200-250 mA h g(-1) and working potentials in the 3.4-3.8 V range versus Li. Here, we demonstrate an innovative paradigm to extend the LRLO concept. We have balanced the substitution of cobalt in the transition-metal layer of the lattice with aluminum and lithium, pushing the composition of LRLO to unexplored stoichiometries, that is, Li-1.2(+x)(Mn,Ni,Co,AI)(0.8-x)O2-delta. The fine tuning of the composition of the metal blend results in an optimized layered material, that is, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2-delta, with outstanding electrochemical performance in full LIBs, improved environmental benignity, and reduced manufacturing costs compared to the state-of-the-art.

Pushing Stoichiometries of Lithium-Rich Layered Oxides Beyond Their Limits

Mauri, Silvia;
2022-01-01

Abstract

Lithium-rich layered oxides (LRLOs) are opening unexplored frontiers for high-capacity/high-voltage positive electrodes in Li-ion batteries (LIBs) to meet the challenges of green and safe transportation as well as cheap and sustainable stationary energy storage from renewable sources. LRLOs exploit the extra lithiation provided by the Li1.2TM0.8O2 stoichiometries (TM = a blend of transition metals with a moderate cobalt content) achievable by a layered structure to disclose specific capacities beyond 200-250 mA h g(-1) and working potentials in the 3.4-3.8 V range versus Li. Here, we demonstrate an innovative paradigm to extend the LRLO concept. We have balanced the substitution of cobalt in the transition-metal layer of the lattice with aluminum and lithium, pushing the composition of LRLO to unexplored stoichiometries, that is, Li-1.2(+x)(Mn,Ni,Co,AI)(0.8-x)O2-delta. The fine tuning of the composition of the metal blend results in an optimized layered material, that is, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2-delta, with outstanding electrochemical performance in full LIBs, improved environmental benignity, and reduced manufacturing costs compared to the state-of-the-art.
2022
Pubblicato
https://pubs.acs.org/doi/10.1021/acsaem.1c03396
File in questo prodotto:
File Dimensione Formato  
acsaem.1c03396.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.96 MB
Formato Adobe PDF
3.96 MB Adobe PDF Visualizza/Apri
ae1c03396_si_001.pdf

accesso aperto

Descrizione: supplementary
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037841
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact