Au/TiO2 photocatalysts were studied, characterized, and compared for CO2 photocatalytic gas-phase reduction. The impact of the nature of the TiO2 support was studied. It was shown that the surface area/porosity/TiO2 crystal phase/density of specific exposed facets and oxygen vacancies were the key factors determining CH4 productivity under solar-light activation. A 0.84 wt.% Au/TiO2 SG (Sol Gel) calcined at 400 degrees C exhibited the best performance, leading to a continuous mean CH4 production rate of 50 mu mol.h(-1).g(-1) over 5 h, associated with an electronic selectivity of 85%. This high activity was mainly attributed to the large surface area and accessible microporous volume, high density of exposed TiO2 (101) anatase facets, and oxygen vacancies acting as reactive defects sites for CO2 adsorption/activation/dissociation and charge carrier transport.

A Parametric Study of the Crystal Phases on Au/TiO2 Photocatalysts for CO2 Gas-Phase Reduction in the Presence of Water

Suhadolnik, L;Fornasiero, P;
2022-01-01

Abstract

Au/TiO2 photocatalysts were studied, characterized, and compared for CO2 photocatalytic gas-phase reduction. The impact of the nature of the TiO2 support was studied. It was shown that the surface area/porosity/TiO2 crystal phase/density of specific exposed facets and oxygen vacancies were the key factors determining CH4 productivity under solar-light activation. A 0.84 wt.% Au/TiO2 SG (Sol Gel) calcined at 400 degrees C exhibited the best performance, leading to a continuous mean CH4 production rate of 50 mu mol.h(-1).g(-1) over 5 h, associated with an electronic selectivity of 85%. This high activity was mainly attributed to the large surface area and accessible microporous volume, high density of exposed TiO2 (101) anatase facets, and oxygen vacancies acting as reactive defects sites for CO2 adsorption/activation/dissociation and charge carrier transport.
2022
10-dic-2022
Pubblicato
https://www.mdpi.com/2073-4344/12/12/1623
File in questo prodotto:
File Dimensione Formato  
catalysts-12-01623-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3038240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact