We study an open quantum spin chain of arbitrary length with nearest neighbor X X interactions of strength g, immersed in an external constant magnetic field Δ along the z direction, whose end spins are weakly coupled to two heat baths at different temperatures. In the so-called global approach, namely, without neglecting interspin interactions, using standard weak-coupling limit techniques, we first derive the open chain master equation written in terms of fermionic mode operators. Then, we focus on the study of the dependence of the resulting open dynamics from the ratio r ≡ g/Δ. By increasing r, some of the chain Bohr transition frequencies become negative; when this occurs, both the generator of the dissipative time evolution and its stationary states behave discontinuously. As a consequence, the asymptotic spin and heat flows also exhibit discontinuities, but in a different way: while source terms in the spin flow continuity equation show jumps, the heat flow instead is continuous but with discontinuous first derivatives with respect to r. These two behaviors might be experimentally accessible; in particular, they could discriminate between the global and the local approaches to open quantum spin chains. Indeed, the latter one, which neglects interspin interactions in the derivation of the master equation, does not show any kind of discontinuous behavior.
Stationary states of open XX-spin chains
Benatti, F.
Membro del Collaboration Group
;Floreanini, R.Membro del Collaboration Group
;
2022-01-01
Abstract
We study an open quantum spin chain of arbitrary length with nearest neighbor X X interactions of strength g, immersed in an external constant magnetic field Δ along the z direction, whose end spins are weakly coupled to two heat baths at different temperatures. In the so-called global approach, namely, without neglecting interspin interactions, using standard weak-coupling limit techniques, we first derive the open chain master equation written in terms of fermionic mode operators. Then, we focus on the study of the dependence of the resulting open dynamics from the ratio r ≡ g/Δ. By increasing r, some of the chain Bohr transition frequencies become negative; when this occurs, both the generator of the dissipative time evolution and its stationary states behave discontinuously. As a consequence, the asymptotic spin and heat flows also exhibit discontinuities, but in a different way: while source terms in the spin flow continuity equation show jumps, the heat flow instead is continuous but with discontinuous first derivatives with respect to r. These two behaviors might be experimentally accessible; in particular, they could discriminate between the global and the local approaches to open quantum spin chains. Indeed, the latter one, which neglects interspin interactions in the derivation of the master equation, does not show any kind of discontinuous behavior.File | Dimensione | Formato | |
---|---|---|---|
0202-3.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
432.86 kB
Formato
Adobe PDF
|
432.86 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.