We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom (B) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic B decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb(-1), collected at the gamma(4S) resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be epsilon(eff) = (30.0 +/- 1.2(stat) +/- 0.4(syst))% for a category-based algorithm and epsilon(eff) = (28.8 +/- 1.2(stat) +/- 0.4(syst))% for a deep-learning-based algorithm.
B-flavor tagging at Belle II
E. Ganiev;C. La Licata;L. Vitale;
2022-01-01
Abstract
We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom (B) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic B decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb(-1), collected at the gamma(4S) resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be epsilon(eff) = (30.0 +/- 1.2(stat) +/- 0.4(syst))% for a category-based algorithm and epsilon(eff) = (28.8 +/- 1.2(stat) +/- 0.4(syst))% for a deep-learning-based algorithm.File | Dimensione | Formato | |
---|---|---|---|
s10052-022-10180-9.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.