Neural networks have been recently proposed as variational wave functions for quantum many-body systems [G. Carleo and M. Troyer, Science 355, 602 (2017)]. In this work, we focus on a specific architecture, known as restricted Boltzmann machine (RBM), and analyse its accuracy for the spin-1/2 J1 − J2 antiferromagnetic Heisenberg model in one spatial dimension. The ground state of this model has a non-trivial sign structure, es- pecially for J2/J1 > 0.5, forcing us to work with complex-valued RBMs. Two variational Ansätze are discussed: one defined through a fully complex RBM, and one in which two different real-valued networks are used to approximate modulus and phase of the wave function. In both cases, translational invariance is imposed by considering linear combi- nations of RBMs, giving access also to the lowest-energy excitations at fixed momentum k. We perform a systematic study on small clusters to evaluate the accuracy of these wave functions in comparison to exact results, providing evidence for the supremacy of the fully complex RBM. Our calculations show that this kind of Ansätze is very flexible and describes both gapless and gapped ground states, also capturing the incommensu- rate spin-spin correlations and low-energy spectrum for J2/J1 > 0.5. The RBM results are also compared to the ones obtained with Gutzwiller-projected fermionic states, often employed to describe quantum spin models [F. Ferrari, A. Parola, S. Sorella and F. Becca, Phys. Rev. B 97, 235103 (2018)]. Contrary to the latter class of variational states, the fully-connected structure of RBMs hampers the transferability of the wave function from small to large clusters, implying an increase in the computational cost with the system size.

Accuracy of restricted Boltzmann machines for the one-dimensional $J_1-J_2$ Heisenberg model

Federico Becca
2022-01-01

Abstract

Neural networks have been recently proposed as variational wave functions for quantum many-body systems [G. Carleo and M. Troyer, Science 355, 602 (2017)]. In this work, we focus on a specific architecture, known as restricted Boltzmann machine (RBM), and analyse its accuracy for the spin-1/2 J1 − J2 antiferromagnetic Heisenberg model in one spatial dimension. The ground state of this model has a non-trivial sign structure, es- pecially for J2/J1 > 0.5, forcing us to work with complex-valued RBMs. Two variational Ansätze are discussed: one defined through a fully complex RBM, and one in which two different real-valued networks are used to approximate modulus and phase of the wave function. In both cases, translational invariance is imposed by considering linear combi- nations of RBMs, giving access also to the lowest-energy excitations at fixed momentum k. We perform a systematic study on small clusters to evaluate the accuracy of these wave functions in comparison to exact results, providing evidence for the supremacy of the fully complex RBM. Our calculations show that this kind of Ansätze is very flexible and describes both gapless and gapped ground states, also capturing the incommensu- rate spin-spin correlations and low-energy spectrum for J2/J1 > 0.5. The RBM results are also compared to the ones obtained with Gutzwiller-projected fermionic states, often employed to describe quantum spin models [F. Ferrari, A. Parola, S. Sorella and F. Becca, Phys. Rev. B 97, 235103 (2018)]. Contrary to the latter class of variational states, the fully-connected structure of RBMs hampers the transferability of the wave function from small to large clusters, implying an increase in the computational cost with the system size.
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_12_5_166.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3040361
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact