Supramolecular hydrogels obtained from the self-organization of simple peptides, such as tripeptides, are attractive soft materials. Their viscoelastic properties can be enhanced through the inclusion of carbon nanomaterials (CNMs), although their presence can also hinder self-assembly, thus requiring investigation of the compatibility of CNMs with peptide supramolecular organization. In this work, we compared single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as nanostructured additives for a tripeptide hydrogel, revealing superior performance by the latter. Several spectroscopic techniques, as well as thermogravimetric analyses, microscopy, and rheology data, provide details to elucidate the structure and behavior of nanocomposite hydrogels of this kind.
Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs
Rozhin, Petr;Kralj, Slavko;Marchesan, Silvia
;
2023-01-01
Abstract
Supramolecular hydrogels obtained from the self-organization of simple peptides, such as tripeptides, are attractive soft materials. Their viscoelastic properties can be enhanced through the inclusion of carbon nanomaterials (CNMs), although their presence can also hinder self-assembly, thus requiring investigation of the compatibility of CNMs with peptide supramolecular organization. In this work, we compared single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as nanostructured additives for a tripeptide hydrogel, revealing superior performance by the latter. Several spectroscopic techniques, as well as thermogravimetric analyses, microscopy, and rheology data, provide details to elucidate the structure and behavior of nanocomposite hydrogels of this kind.File | Dimensione | Formato | |
---|---|---|---|
RozhinNanomaterials2023.pdf
accesso aperto
Descrizione: articolo pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
4.13 MB
Formato
Adobe PDF
|
4.13 MB | Adobe PDF | Visualizza/Apri |
nanomaterials-2236983-supplementary.pdf
accesso aperto
Descrizione: supplementary file
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
4.36 MB
Formato
Adobe PDF
|
4.36 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.