Beta-lactam antibiotics are one of the most commonly used drug classes in managing bacterial infections. However, their use is threatened by the alarming phenomenon of antimicrobial resistance, which represents a worldwide health concern. Given the continuous spread of metallo-β-lactamases (MBLs) producing pathogens, the need to discover broad-spectrum β-lactamase inhibitors is increasingly growing. A series of zinc chelators have been synthesized and investigated for their ability to hamper the Zn-ion network of interactions in the active site of MBLs. We assessed the inhibitory activity of new polyimidazole ligands N,N'-bis((imidazol-4-yl)methyl)-ethylenediamine, N,N,N'-tris((imidazol-4-yl)methyl)-ethylenediamine, N,N,N,N'-tetra((imidazol-4-yl-methyl)-ethylenediamine toward three different subclasses B1 MBLs: VIM-1, NDM-1 and IMP-1 by in vitro assays. The activity of known zinc chelators such as 1,4,7,10,13-Pentaazacyclopentadecane, 1,4,8,11-Tetraazacyclotetradecane and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid was also assessed. Moreover, a molecular docking study was carried to gain insight into the interaction mode of the most active ligands.

New polyimidazole ligands against subclass B1 metallo-β-lactamases: Kinetic, microbiological, docking analysis

Di Bella, Stefano;
2023-01-01

Abstract

Beta-lactam antibiotics are one of the most commonly used drug classes in managing bacterial infections. However, their use is threatened by the alarming phenomenon of antimicrobial resistance, which represents a worldwide health concern. Given the continuous spread of metallo-β-lactamases (MBLs) producing pathogens, the need to discover broad-spectrum β-lactamase inhibitors is increasingly growing. A series of zinc chelators have been synthesized and investigated for their ability to hamper the Zn-ion network of interactions in the active site of MBLs. We assessed the inhibitory activity of new polyimidazole ligands N,N'-bis((imidazol-4-yl)methyl)-ethylenediamine, N,N,N'-tris((imidazol-4-yl)methyl)-ethylenediamine, N,N,N,N'-tetra((imidazol-4-yl-methyl)-ethylenediamine toward three different subclasses B1 MBLs: VIM-1, NDM-1 and IMP-1 by in vitro assays. The activity of known zinc chelators such as 1,4,7,10,13-Pentaazacyclopentadecane, 1,4,8,11-Tetraazacyclotetradecane and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid was also assessed. Moreover, a molecular docking study was carried to gain insight into the interaction mode of the most active ligands.
2023
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0162013423000454?via=ihub
File in questo prodotto:
File Dimensione Formato  
BOGNANNI JIB 2023.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0162013423000454-mmc1.pdf

Accesso chiuso

Descrizione: Supplementary data
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 355.11 kB
Formato Adobe PDF
355.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3040961
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact