Although the extensive work on 2D materials, a comprehensive understanding of the layer-substrate interaction and how this affects the structure and the electronic properties is still lacking.With the aim of shedding light on this still open issue, in this work we extensively investigated through numerical simulations some selected systems based on two different 2D materials, Graphene (G) on Nickel (Ni) substrates (most of the work) and Blue-Phosphorus (BP) on Gold (Au) substrate, using different and, to some extent, complementary numerical approaches. Most of the work consisted in quantum mechanical ab-initio simulations based on Density Functional Theory (DFT), paying attention to some specific technical details to ensure the accuracy and the reliability of the results. Part of the work concerned the construction via neural network techniques and the validation of new interatomic potentials to extend the investigation of G/Ni systems to more realistic configurations or to dynamical processes not directly affordable by ab-initio calculations. Throughout the work, a direct comparison with published or new experimental results is discussed. Graphene can be easily grown by CVD on nickel substrates but its electronic and structural properties depend on the matching/mismatching and on the alignment/misalignment between its hexagonal lattice and the underlying surface lattice.The thesis starts with the investigation of epitaxial G on Ni(111), which is already very well known.Starting from a set of DFT calculations that we also used as a benchmark to refine many technical details of our simulations on other new configurations, we used a Neural Network to generate an interatomic potential able to accurately predict energy and forces in this system. The new potential allows to perform molecular dynamics simulations with thousands of atoms with accuracy close to that of DFT, paving the way for large-scale simulations of such system. We report a successful application on large G domains showing cohexistence of different registries with the substrate.After that, structural reconstruction that Ni(111) surface undergoes at high temperatures during CVD process has been investigated. We showed how the presence of rotated domains of graphene with respect to Ni(111) lattice affects the formation of a nickel carbide phase, Ni2C,underneath. Furthermore, we studied the intercalation of Carbon Monoxide under epitaxial G grown on Ni(111) providing a systematic investigation of the intercalated CO pattern, highlighting the modifications induced on the graphene electronic structure.The most important signature of CO intercalation is a shift of Dirac cones linearly dependent on the CO coverage, opening the way to application as gas sensor to easily detect and quantify its presence. In this work, G on Ni(100)has also been studied. Such an interface, due to lattice mismatch, presents a stripe moiré pattern in which strongly (chemisorbed) and weakly (physisorbed) interacting G regions with Ni surface alternate, inducing anisotropic modulated electronic structure and reactivity properties.Here we provided a full investigation of different kind of defects of G layer and we investigated how they can increase the reactivity of graphene for metal adatoms or molecules adsorption. The last part of the thesis has been devoted to Blue-Phosphorus,a new 2D material made by only P atoms arranged similarly to graphene but with a larger lattice parameter and a small buckling of the two constituent sublattices.To describe BP grown on Au(111),we identified as the best candidate a structural model formed by P9 pyramidal shaped domains connected by Au adatoms in a 5x5 supercell.The nice correspondence with experimental STM images and ARPES spectra, allows to discriminate among different possible models,indicating once again the necessity of a synergetic effort between simulations and experiments to shed light on the structure and properties of real systems.

Nonostante l'ampio lavoro già fatto sui materiali 2D,non si è ancora arrivati a una completa comprensione dell'interazione strato-substrato e di come ciò influisce sulla struttura e sulle proprietà elettroniche. Con l'obiettivo di far luce su questa questione ancora aperta, in questo lavoro sono stati investigati attraverso simulazioni numeriche alcuni sistemi basati su due diversi materiali 2D, Grafene (G) su substrati di Nichel (Ni)(la maggior parte del lavoro) e Blue-Phosphorus (BP) su substrati di Oro (Au), utilizzando due diversi approcci numerici. La maggior parte del lavoro consiste in simulazioni ab-initio basate sulla Teoria del funzionale densità(DFT), prestando attenzione ad alcuni dettagli tecnici specifici per garantire l'accuratezza e attendibilità dei risultati. Una parte del lavoro in questione invece riguarda la costruzione e validazione tramite tecniche di reti neurali di un nuovo potenziale interatomico, con l’obiettivo di estendere lo studio dei sistemi G/Ni a configurazioni più realistiche o a processi non affrontabili tramite calcoli ab-initio. Durante tutto il lavoro, un confronto diretto con risultati sperimentali,pubblicati o nuovi,sarà discusso. Il grafene può essere facilmente cresciuto mediante CVD su substrati di nichel, ma le sue proprietà elettroniche e strutturali dipendono dal matching/mismatching e dall'allineamento/disallineamento tra il suo reticolo esagonale e il reticolo superficiale sottostante. Nella prima parte di questo lavoro di tesi viene discusso il G epitassiale cresciuto su Ni(111), un sistema già noto in letteratura. Partendo da una serie di calcoli DFT, abbiamo utilizzato una rete neurale per generare un potenziale interatomico in grado di prevedere con precisione l'energia e le forze in questo sistema. Il nuovo potenziale consente di eseguire simulazioni di dinamica molecolare con migliaia di atomi con una precisione vicina a quella del DFT, aprendo la strada a simulazioni su larga scala per questi sistemi. Successivamente, è stata studiata la ricostruzione strutturale subita dalla superficie di Ni(111) ad alte temperature durante il processo CVD. In questo lavoro si mostra come la presenza di domini ruotati di G rispetto al reticolo Ni(111) influisce sulla formazione di una fase di carburo di nichel,Ni2C, sottostante. Inoltre, abbiamo studiato l'intercalazione del monossido di carbonio all’interfaccia G epitassiale e Ni(111), indagando in modo sistematico il pattern formato dal CO intercalato, evidenziando le modificazioni indotte sulla struttura elettronica del grafene. La traccia più importante dell'intercalazione del CO è uno spostamento dei coni di Dirac, linearmente dipendente dalla quantità di CO intercalata. In questo lavoro è stato studiato anche il G su Ni(100). Tale interfaccia, a causa del mismatch reticolare, presenta un pattern di moirè a strisce (stripè moirè) in cui regioni di G fortemente e debolmente interagenti con il substrato di Ni sottostante si alternano, inducendo proprietà elettroniche anisotrope e modulate e proprietà di reattività. In questo caso sono stati studiati diversi tipi di difetti dello strato di G e come questi possano aumentare la reattività del grafene per l’assorbimento di adatomi o molecole. L'ultima parte della tesi è stata dedicata al Blu-Fosforo, un nuovo materiale 2D composto da soli atomi di P disposti in modo simile al grafene ma con un parametro reticolare più grande e con gli atomi non giacenti sullo stesso piano. Il miglior modello individuato per descrivere il BP su Au(111) è formato da P9 domini di forma piramidale collegati tra loro da adatomi di Au in una supercella 5x5. La corrispondenza con le immagini sperimentali STM e gli spettri ARPES, consente di discriminare tra diversi modelli possibili, indicando ancora una volta la necessità di uno sforzo sinergico tra simulazioni ed esperimenti per far luce sulla struttura e sulle proprietà dei sistemi reali.

MATERIALI 2D SU SUPERFICI METALLICHE: UN APPROCCIO NUMERICO / DEL PUPPO, Simone. - (2023 Feb 22).

MATERIALI 2D SU SUPERFICI METALLICHE: UN APPROCCIO NUMERICO

DEL PUPPO, SIMONE
2023-02-22

Abstract

Although the extensive work on 2D materials, a comprehensive understanding of the layer-substrate interaction and how this affects the structure and the electronic properties is still lacking.With the aim of shedding light on this still open issue, in this work we extensively investigated through numerical simulations some selected systems based on two different 2D materials, Graphene (G) on Nickel (Ni) substrates (most of the work) and Blue-Phosphorus (BP) on Gold (Au) substrate, using different and, to some extent, complementary numerical approaches. Most of the work consisted in quantum mechanical ab-initio simulations based on Density Functional Theory (DFT), paying attention to some specific technical details to ensure the accuracy and the reliability of the results. Part of the work concerned the construction via neural network techniques and the validation of new interatomic potentials to extend the investigation of G/Ni systems to more realistic configurations or to dynamical processes not directly affordable by ab-initio calculations. Throughout the work, a direct comparison with published or new experimental results is discussed. Graphene can be easily grown by CVD on nickel substrates but its electronic and structural properties depend on the matching/mismatching and on the alignment/misalignment between its hexagonal lattice and the underlying surface lattice.The thesis starts with the investigation of epitaxial G on Ni(111), which is already very well known.Starting from a set of DFT calculations that we also used as a benchmark to refine many technical details of our simulations on other new configurations, we used a Neural Network to generate an interatomic potential able to accurately predict energy and forces in this system. The new potential allows to perform molecular dynamics simulations with thousands of atoms with accuracy close to that of DFT, paving the way for large-scale simulations of such system. We report a successful application on large G domains showing cohexistence of different registries with the substrate.After that, structural reconstruction that Ni(111) surface undergoes at high temperatures during CVD process has been investigated. We showed how the presence of rotated domains of graphene with respect to Ni(111) lattice affects the formation of a nickel carbide phase, Ni2C,underneath. Furthermore, we studied the intercalation of Carbon Monoxide under epitaxial G grown on Ni(111) providing a systematic investigation of the intercalated CO pattern, highlighting the modifications induced on the graphene electronic structure.The most important signature of CO intercalation is a shift of Dirac cones linearly dependent on the CO coverage, opening the way to application as gas sensor to easily detect and quantify its presence. In this work, G on Ni(100)has also been studied. Such an interface, due to lattice mismatch, presents a stripe moiré pattern in which strongly (chemisorbed) and weakly (physisorbed) interacting G regions with Ni surface alternate, inducing anisotropic modulated electronic structure and reactivity properties.Here we provided a full investigation of different kind of defects of G layer and we investigated how they can increase the reactivity of graphene for metal adatoms or molecules adsorption. The last part of the thesis has been devoted to Blue-Phosphorus,a new 2D material made by only P atoms arranged similarly to graphene but with a larger lattice parameter and a small buckling of the two constituent sublattices.To describe BP grown on Au(111),we identified as the best candidate a structural model formed by P9 pyramidal shaped domains connected by Au adatoms in a 5x5 supercell.The nice correspondence with experimental STM images and ARPES spectra, allows to discriminate among different possible models,indicating once again the necessity of a synergetic effort between simulations and experiments to shed light on the structure and properties of real systems.
22-feb-2023
PERESSI, MARIA
35
2021/2022
Settore FIS/03 - Fisica della Materia
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
tesi_definitiva_DelPuppoSimone.pdf

accesso aperto

Descrizione: TESI
Tipologia: Tesi di dottorato
Dimensione 6.4 MB
Formato Adobe PDF
6.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3041020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact