Functional innervation of skeletal muscle cells is required to guarantee muscle development and maintenance of trophic homeostasis of muscle mass. Impairments in nerve-muscle communication due to disuse, ageing or injuries affect skeletal muscles at metabolic, biochemical and structural levels producing alterations in biophysical membrane properties, nAChRs distribution, EC coupling mechanism, muscle fiber phenotype and release of myokines. Electrical pulse stimulation (EPS) mimics nerve activity in inducing muscle cell contraction and it has been proposed as tool to counteract muscle atrophy and to enhance muscle strength. Variations in activity and in extent of the contraction are induced by modifying the parameters of EPS such as intensity, frequency, pulse duration. Depending on the entity, muscle contraction leads to several changes in terms of intracellular Ca2+, subcellular structures reorganization, gene transcription and myokine release. In rodent skeletal myotubes, tetanic EPS induces two separate Ca2+ signals: a fast one, related to contraction and a slow signal related to transcriptional events. In the skeletal muscles, changes in the intracellular Ca2+ concentration via Ca2+ release from intercellular stores are achieved through the activation of ryanodine receptors (RyR) and Inositol-1,4,5-triphosphate receptor (IP3R) channels. The localization of IP3R1s close to the endplate zone, nearby the nicotinic acetylcholine receptors (nAChRs) and in the subsynaptic areas of neuromuscular junction (NMJ), suggests a role of EPS-mediated IP3R1-induced Ca2+ release also in the mechanism stabilizing the NMJ apparatus. By using FDB denervated cultures as a cell model to reproduce in vitro the denervation effects at the endplate level, we observed a direct proportionality between the subsynaptic IP3R1-stained volume and the endplate size. Moreover, we demonstrated a significant reduction of the IP3R1-stained volume associated with the endplate fragmentation after in vitro denervation. The role of electrical activity vs neural trophic factors in controlling the subsynaptic IP3R1-sensitive compartment was also investigated. The addition of agrin does not affect the reduction of denervation-induced subsynaptic IP3R1 volumes, whereas a positive electrical activity-dependent regulation of the endplate IP3R1 distribution was observed. We also investigated the role of the scaffold protein Homer 2 in the stabilization of the NMJ using a transgenic Homer 2-/- mice model. In skeletal muscle cells, Homer proteins colocalize with IP3Rs, therefore a IP3R-Homer interaction could be responsible for generating local IP3-sensitive Ca2+ signals. Reduced size of NMJ was observed in single Homer 2-/- FDB skeletal muscle fibers. Genes involved in controlling ubiquitination and proteolysis, such as MuRF1 and Atrogin-1, appeared upregulated in Homer 2-/- rat SOL, as occurs in conditions of atrophy, suggesting a role for Homer 2 as co-regulator of the skeletal muscle normo-trophic status. Further experiments are needed to better characterize the function of Homer 2 in the NMJ stability and in controlling the skeletal muscle trophism via putative nAChR-regulated intracellular signaling pathways. The endocrine role of the skeletal muscle was also examined focusing on IL-6 release, a myokine known to increase at the systemic level during exercise. Investigating the role of mechanosensitive Piezo 1 channels in the myokine release, we demonstrated that the specific Piezo1 agonist Yoda 1 to mimicked the EPS-induced myokine release suggesting that the chemical activation of the mechanosensitive channels might represent a pharmacological tool to promote myokine release. In conclusion, the findings of our research confirm that the EPS is a powerful tool to modulate different important aspects of the skeletal muscle physiology and that the knowledge of its effects at molecular level could help to improve the benefits of the electrostimulation in clinics.
L'innervazione funzionale delle cellule muscolari scheletriche garantisce il fisiologico sviluppo muscolare ed il mantenimento del trofismo e della massa muscolare. Alterazioni della comunicazione nervo-muscolo nella sinapsi neuromuscolare (NMJ) per invecchiamento, disuso o traumi influenzano i muscoli scheletrici a livello metabolico, biochimico e strutturale con modificazioni delle proprietà di membrana, dei meccanismi di rilascio di Ca2+, della distribuzione dei nAChR, del meccanismo di eccitazione-contrazione (EC) e del rilascio di miochine. La stimolazione elettrica (EPS) del muscolo scheletrico può mimare l’esercizio fisico inducendo contrazione. Variazioni della contrazione possono essere indotte modificando intensità, frequenza e durata dell’impulso elettrico. La contrazione muscolare modula la concentrazione intracellulare di Ca2+ ([Ca2+]i), la riorganizzazione delle strutture subcellulari, la trascrizione genica e rilascio di miochine. La contrazione tetanica indotta da EPS induce un aumento veloce della [Ca2+]i correlato alla contrazione ed uno lento correlato ad eventi trascrizionali. Nei muscoli scheletrici, le variazioni della [Ca2+]i sono generati dall’attività dei recettori della rianodina (RyR) e dell'inositolo-1,4,5-trifosfato (IP3R), canali che mediano il rilascio di Ca2+ dai depositi intercellulari. La presenza di IP3R di tipo 1 (IP3R1) nella regione di placca vicino ai recettori dell'acetilcolina (nAChR) suggerisce un suo ruolo nel controllo di variazioni locali della [Ca2+]i per la stabilizzazione della NMJ. Utilizzando fibre adulte in coltura per riprodurre la denervazione muscolare in vitro, abbiamo osservato una diminuzione proporzionale del volume subsinaptico di IP3R1 e della placca. Inoltre, i risultati hanno dimostrato che tale diminuzione non è contrastata dal trattamento con agrina neuronale ma mediante induzione dell'attività elettrica nella fibre denervate in vitro. Poiché nelle fibre muscolari scheletriche la proteina scaffold Homer 2 co-localizza con i IP3R, abbiamo anche indagato il ruolo della Homer 2 nella stabilizzazione della NMJ utilizzando topi transgenici Homer 2-/-. Nelle fibre muscolari Homer 2-/-, abbiamo riscontrato una iperespressione dei geni MuRF1 e Atrogin-1 coinvolti nell'ubiquitinazione e nella proteolisi e una riduzione nelle dimensioni della placca. Questi dati suggeriscono un ruolo per Homer 2 come co-regolatore del trofismo del muscolo scheletrico. Ulteriori esperimenti sono necessari per meglio caratterizzare la funzione di Homer 2 nella stabilizzazione della NMJ. Infine, abbiamo valutato il ruolo endocrino del muscolo scheletrico nel rilascio della miochina IL-6, nota per essere secreta e raggiungere elevati livelli ematici sistemici durante l'esercizio fisico. I risultati ottenuti indicano che la contrazione indotta da EPS attiva i canali ionici meccano-sensibili Piezo1 e che l’attività di questi ultimi controlla il rilascio di IL-6. In conclusione, nel loro insieme, i risultati ottenuti indicano che la EPS del muscolo scheletrico è un potente strumento per la modulazione di diversi aspetti della fisiologia del muscolo scheletrico e che la migliore conoscenza dei suoi effetti a livello molecolare potrebbe migliorare i benefici clinici dell’elettrostimolazione impiegata nei protocolli riabilitativi.
Effetti dell'elettrostimolazione sulla fisiologia del muscolo scheletrico / Massaria, Gabriele. - (2023 Feb 28).
Effetti dell'elettrostimolazione sulla fisiologia del muscolo scheletrico.
MASSARIA, GABRIELE
2023-02-28
Abstract
Functional innervation of skeletal muscle cells is required to guarantee muscle development and maintenance of trophic homeostasis of muscle mass. Impairments in nerve-muscle communication due to disuse, ageing or injuries affect skeletal muscles at metabolic, biochemical and structural levels producing alterations in biophysical membrane properties, nAChRs distribution, EC coupling mechanism, muscle fiber phenotype and release of myokines. Electrical pulse stimulation (EPS) mimics nerve activity in inducing muscle cell contraction and it has been proposed as tool to counteract muscle atrophy and to enhance muscle strength. Variations in activity and in extent of the contraction are induced by modifying the parameters of EPS such as intensity, frequency, pulse duration. Depending on the entity, muscle contraction leads to several changes in terms of intracellular Ca2+, subcellular structures reorganization, gene transcription and myokine release. In rodent skeletal myotubes, tetanic EPS induces two separate Ca2+ signals: a fast one, related to contraction and a slow signal related to transcriptional events. In the skeletal muscles, changes in the intracellular Ca2+ concentration via Ca2+ release from intercellular stores are achieved through the activation of ryanodine receptors (RyR) and Inositol-1,4,5-triphosphate receptor (IP3R) channels. The localization of IP3R1s close to the endplate zone, nearby the nicotinic acetylcholine receptors (nAChRs) and in the subsynaptic areas of neuromuscular junction (NMJ), suggests a role of EPS-mediated IP3R1-induced Ca2+ release also in the mechanism stabilizing the NMJ apparatus. By using FDB denervated cultures as a cell model to reproduce in vitro the denervation effects at the endplate level, we observed a direct proportionality between the subsynaptic IP3R1-stained volume and the endplate size. Moreover, we demonstrated a significant reduction of the IP3R1-stained volume associated with the endplate fragmentation after in vitro denervation. The role of electrical activity vs neural trophic factors in controlling the subsynaptic IP3R1-sensitive compartment was also investigated. The addition of agrin does not affect the reduction of denervation-induced subsynaptic IP3R1 volumes, whereas a positive electrical activity-dependent regulation of the endplate IP3R1 distribution was observed. We also investigated the role of the scaffold protein Homer 2 in the stabilization of the NMJ using a transgenic Homer 2-/- mice model. In skeletal muscle cells, Homer proteins colocalize with IP3Rs, therefore a IP3R-Homer interaction could be responsible for generating local IP3-sensitive Ca2+ signals. Reduced size of NMJ was observed in single Homer 2-/- FDB skeletal muscle fibers. Genes involved in controlling ubiquitination and proteolysis, such as MuRF1 and Atrogin-1, appeared upregulated in Homer 2-/- rat SOL, as occurs in conditions of atrophy, suggesting a role for Homer 2 as co-regulator of the skeletal muscle normo-trophic status. Further experiments are needed to better characterize the function of Homer 2 in the NMJ stability and in controlling the skeletal muscle trophism via putative nAChR-regulated intracellular signaling pathways. The endocrine role of the skeletal muscle was also examined focusing on IL-6 release, a myokine known to increase at the systemic level during exercise. Investigating the role of mechanosensitive Piezo 1 channels in the myokine release, we demonstrated that the specific Piezo1 agonist Yoda 1 to mimicked the EPS-induced myokine release suggesting that the chemical activation of the mechanosensitive channels might represent a pharmacological tool to promote myokine release. In conclusion, the findings of our research confirm that the EPS is a powerful tool to modulate different important aspects of the skeletal muscle physiology and that the knowledge of its effects at molecular level could help to improve the benefits of the electrostimulation in clinics.File | Dimensione | Formato | |
---|---|---|---|
Tesi Gabriele Massaria.pdf
accesso aperto
Descrizione: Effects of electrical stimulation on the physiology of the skeletal muscle cells
Tipologia:
Tesi di dottorato
Dimensione
18.52 MB
Formato
Adobe PDF
|
18.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.