Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of 'resting' oocyte [Ca2+]i following asbestos exposure. Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca2+]e, and to specific blockers of TMEM16A Ca2+-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the 'resting' [Ca2+]i likelihood by increasing the cell membrane permeability to Ca2 in favor of a tonic activation of TMEME16A channels. Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. Conclusion: the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos-membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes.

Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes

Bernareggi A.
Funding Acquisition
;
Zangari M.
Methodology
;
Zacchi P.
Methodology
;
Borelli V.
Conceptualization
;
Mangogna A.
Formal Analysis
;
Lorenzon P.
Writing – Review & Editing
;
Zabucchi G.
Conceptualization
2023-01-01

Abstract

Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of 'resting' oocyte [Ca2+]i following asbestos exposure. Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca2+]e, and to specific blockers of TMEM16A Ca2+-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the 'resting' [Ca2+]i likelihood by increasing the cell membrane permeability to Ca2 in favor of a tonic activation of TMEME16A channels. Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. Conclusion: the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos-membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes.
File in questo prodotto:
File Dimensione Formato  
membranes-13-00180(1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF Visualizza/Apri
membranes-2167129-supplementary.pdf

accesso aperto

Descrizione: supplementary file
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 500.99 kB
Formato Adobe PDF
500.99 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3041405
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact