Microplastics represent one of the main environmental concerns of our time and their presence is well known in all freshwater ecosystems. However, there is still a lack of knowledge about the interference with some environmental dynamics, such as the leaf litter decomposition, which represents a key process in freshwater ecosystems. The work presented herein analyzed the leaf litter decomposition in a lotic ecosystem, in relation to water physicochemical parameters, macrobenthic invertebrate functional feeding guilds (FFG) and, as a novelty, the microplastics as additional factor. Physicochemical features were monitored every 15 days for one year. Phragmites australis decomposition rates were investigated during four seasons (summer, autumn, winter, and spring) using the leaf bag technique. Microplastic items were also collected within the leaf bags (used as retaining tool) and within macrobenthic invertebrate colonizers. Shredders were the most contaminated FFG in summer and autumn, while scrapers showed high microplastics levels in autumn and winter. Decomposition rates significantly differed among seasons (0.007 < k < 0.022) and water temperature was the main driver of the decomposition dynamics (relative importance = 70.3 %), positively affecting the decay rates, followed by pH (9.7 %), which showed a negative contribution. Microplastics showed a negative effect (3.1 %), with a relative importance similar and opposite to that observed for the shredders (3.9 %), which value was similar to those recorded for scarpers (2.7 %). This study represents a field investigation regarding the microplastic effects on the organic matter decomposition rates in freshwater environments carried out directly on field. Our results provide new insights about the microplastic interference on environmental dynamics and could represent a starting point for further studies.

Microplastics and leaf litter decomposition dynamics: New insights from a lotic ecosystem (Northeastern Italy)

Marco Bertoli
Writing – Original Draft Preparation
;
Monia Renzi
Formal Analysis
;
Elisabetta Pizzul
Conceptualization
2023-01-01

Abstract

Microplastics represent one of the main environmental concerns of our time and their presence is well known in all freshwater ecosystems. However, there is still a lack of knowledge about the interference with some environmental dynamics, such as the leaf litter decomposition, which represents a key process in freshwater ecosystems. The work presented herein analyzed the leaf litter decomposition in a lotic ecosystem, in relation to water physicochemical parameters, macrobenthic invertebrate functional feeding guilds (FFG) and, as a novelty, the microplastics as additional factor. Physicochemical features were monitored every 15 days for one year. Phragmites australis decomposition rates were investigated during four seasons (summer, autumn, winter, and spring) using the leaf bag technique. Microplastic items were also collected within the leaf bags (used as retaining tool) and within macrobenthic invertebrate colonizers. Shredders were the most contaminated FFG in summer and autumn, while scrapers showed high microplastics levels in autumn and winter. Decomposition rates significantly differed among seasons (0.007 < k < 0.022) and water temperature was the main driver of the decomposition dynamics (relative importance = 70.3 %), positively affecting the decay rates, followed by pH (9.7 %), which showed a negative contribution. Microplastics showed a negative effect (3.1 %), with a relative importance similar and opposite to that observed for the shredders (3.9 %), which value was similar to those recorded for scarpers (2.7 %). This study represents a field investigation regarding the microplastic effects on the organic matter decomposition rates in freshwater environments carried out directly on field. Our results provide new insights about the microplastic interference on environmental dynamics and could represent a starting point for further studies.
File in questo prodotto:
File Dimensione Formato  
59 Bertoli et al_2023_Vipacco_1.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 6.27 MB
Formato Adobe PDF
6.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3042183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact