The study reports the enzymatic synthesis of bio-based oligoesters and chemo-enzymatic processes for obtaining epoxidized bioplasticizers and biolubricants starting from cardoon seed oil. All of the molecules had MW below 1000 g mol-1 and were analyzed in terms of marine biodegradation. The data shed light on the effects of the chemical structure, chemical bond lability, thermal behavior, and water solubility on biodegradation. Moreover, the analysis of the biodegradation of the building blocks that constituted the different bio-based products allowed us to distinguish between different chemical and physicochemical factors. These hints are of major importance for the rational eco-design of new benign bio-based products. Overall, the high lability of ester bonds was confirmed, along with the negligible effect of the presence of epoxy rings on triglyceride structures. The biodegradation data clearly indicated that the monomers/building blocks undergo a much slower process of abiotic or biotic transformations, potentially leading to accumulation. Therefore, the simple analysis of the erosion, hydrolysis, or visual/chemical disappearance of the chemical products or plastic is not sufficient, but ecotoxicity studies on the effects of such small molecules are of major importance. The use of natural feedstocks, such as vegetable seed oils and their derivatives, allows the minimization of these risks, because microorganisms have evolved enzymes and metabolic pathways for processing such natural molecules.

Understanding Marine Biodegradation of Bio-Based Oligoesters and Plasticizers

Zappaterra, Federico;Renzi, Monia;Piccardo, Manuela;Spennato, Mariachiara;Asaro, Fioretta;Todea, Anamaria
;
Gardossi, Lucia
2023-01-01

Abstract

The study reports the enzymatic synthesis of bio-based oligoesters and chemo-enzymatic processes for obtaining epoxidized bioplasticizers and biolubricants starting from cardoon seed oil. All of the molecules had MW below 1000 g mol-1 and were analyzed in terms of marine biodegradation. The data shed light on the effects of the chemical structure, chemical bond lability, thermal behavior, and water solubility on biodegradation. Moreover, the analysis of the biodegradation of the building blocks that constituted the different bio-based products allowed us to distinguish between different chemical and physicochemical factors. These hints are of major importance for the rational eco-design of new benign bio-based products. Overall, the high lability of ester bonds was confirmed, along with the negligible effect of the presence of epoxy rings on triglyceride structures. The biodegradation data clearly indicated that the monomers/building blocks undergo a much slower process of abiotic or biotic transformations, potentially leading to accumulation. Therefore, the simple analysis of the erosion, hydrolysis, or visual/chemical disappearance of the chemical products or plastic is not sufficient, but ecotoxicity studies on the effects of such small molecules are of major importance. The use of natural feedstocks, such as vegetable seed oils and their derivatives, allows the minimization of these risks, because microorganisms have evolved enzymes and metabolic pathways for processing such natural molecules.
File in questo prodotto:
File Dimensione Formato  
2023_polymers-15-01536-1.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri
polymers_2023_supplementary.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3042378
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact