An integrated experimental theoretical approach for the solid-state NMR investigation of a series of hydrogen-storage materials is illustrated. Seven experimental room-temperature structures of groups I and II metal hydrides and borohydrides, namely, NaH, LiH, NaBH4, MgH2, CaH2, Ca(BH4)(2), and LiBH4, were computationally optimized. Periodic lattice calculations were performed by means of the plane-wave method adopting the density functional theory (DFT) generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional as implemented in the Quantum ESPRESSO package. Projector augmented wave (PAW), including the gauge-including projected augmented-wave (GIPAW), methods for solid-state NMR calculations were used adopting both Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) ultrasoft pseudopotentials and new developed pseudopotentials. Computed GIPAW chemical shifts were critically compared with the experimental ones. A good agreement between experimental and computed rnultinuclear chemical shifts was obtained.
Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides
Federico Franco;
2013-01-01
Abstract
An integrated experimental theoretical approach for the solid-state NMR investigation of a series of hydrogen-storage materials is illustrated. Seven experimental room-temperature structures of groups I and II metal hydrides and borohydrides, namely, NaH, LiH, NaBH4, MgH2, CaH2, Ca(BH4)(2), and LiBH4, were computationally optimized. Periodic lattice calculations were performed by means of the plane-wave method adopting the density functional theory (DFT) generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional as implemented in the Quantum ESPRESSO package. Projector augmented wave (PAW), including the gauge-including projected augmented-wave (GIPAW), methods for solid-state NMR calculations were used adopting both Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) ultrasoft pseudopotentials and new developed pseudopotentials. Computed GIPAW chemical shifts were critically compared with the experimental ones. A good agreement between experimental and computed rnultinuclear chemical shifts was obtained.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.