Traffic congestion in urban environment is one of the most critical issue for drivers and city planners for both environment and efficiency reasons. Traffic lights are one of the main tools used to regulate traffic by diverting the drivers between different paths. Rational drivers, in turn, react to the traffic light duration by evaluating their options and, if necessary, by changing direction in order to reach their destination quicker. In this paper, we introduce a macroscopic traffic model for urban intersections that incorporates this rational behavior of the drivers. Then, we exploit it to show that, by providing additional information about the expected redtime duration to the drivers, one can decrease the amount of congestion in the network and the overall length of the queues at the intersections. Additionally, we develop a control policy for the traffic lights that exploits the reaction of the drivers in order to divert them to a different route to further increase the performances. These claims are supported by extensive numerical simulations.

Traffic-light control in urban environment exploiting drivers' reaction to the expected red lights duration

T. Parisini
Membro del Collaboration Group
2022-01-01

Abstract

Traffic congestion in urban environment is one of the most critical issue for drivers and city planners for both environment and efficiency reasons. Traffic lights are one of the main tools used to regulate traffic by diverting the drivers between different paths. Rational drivers, in turn, react to the traffic light duration by evaluating their options and, if necessary, by changing direction in order to reach their destination quicker. In this paper, we introduce a macroscopic traffic model for urban intersections that incorporates this rational behavior of the drivers. Then, we exploit it to show that, by providing additional information about the expected redtime duration to the drivers, one can decrease the amount of congestion in the network and the overall length of the queues at the intersections. Additionally, we develop a control policy for the traffic lights that exploits the reaction of the drivers in order to divert them to a different route to further increase the performances. These claims are supported by extensive numerical simulations.
File in questo prodotto:
File Dimensione Formato  
Scandella_Ghosh_Bin_Parisini_Transportation_Research_C_2022.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3044661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact