Background. Several drugs which are easy to administer in outpatient settings have been authorized and endorsed for high-risk COVID-19 patients with mild–moderate disease to prevent hospital admission and death, complementing COVID-19 vaccines. However, the evidence on the efficacy of COVID-19 antivirals during the Omicron wave is scanty or conflicting. Methods. This retrospective controlled study investigated the efficacy of Molnupiravir or Nirmatrelvir/Ritonavir (Paxlovid®) or Sotrovimab against standard of care (controls) on three different endpoints among 386 high-risk COVID-19 outpatients: hospital admission at 30 days; death at 30 days; and time between COVID-19 diagnosis and first negative swab test result. Multinomial logistic regression was employed to investigate the determinants of hospitalization due to COVID-19-associated pneumonia, whereas time to first negative swab test result was investigated by means of multinomial logistic analysis as well as Cox regression analysis. Results. Only 11 patients (overall rate of 2.8%) developed severe COVID-19-associated pneumonia requiring admission to hospital: 8 controls (7.2%); 2 patients on Nirmatrelvir/Ritonavir (2.0%); and 1 on Sotrovimab (1.8%). No patient on Molnupiravir was institutionalized. Compared to controls, hospitalization was less likely for patients on Nirmatrelvir/Ritonavir (aOR = 0.16; 95% CI: 0.03; 0.89) or Molnupiravir (omitted estimate); drug efficacy was 84% for Nirmatrelvir/Ritonavir against 100% for Molnupiravir. Only two patients died of COVID-19 (rate of 0.5%), both were controls, one (aged 96 years) was unvaccinated and the other (aged 72 years) had adequate vaccination status. At Cox regression analysis, the negativization rate was significantly higher in patients treated with both antivirals—Nirmatrelvir/Ritonavir (aHR = 1.68; 95% CI: 1.25; 2.26) and Molnupiravir (aHR = 1.45; 95% CI: 1.08; 1.94). However, COVID-19 vaccination with three (aHR = 2.03; 95% CI: 1.51; 2.73) or four (aHR = 2.48; 95% CI: 1.32; 4.68) doses had a stronger effect size on viral clearance. In contrast, the negativization rate reduced significantly in patients who were immune-depressed (aHR = 0.70; 95% CI: 0.52; 0.93) or those with a Charlson index ≥ 3 (aHR = 0.63; 0.41; 0.95) or those who had started the respective treatment course 3+ days after COVID-19 diagnosis (aOR = 0.56; 95% CI: 0.38; 0.82). Likewise, at internal analysis (excluding patients on standard of care), patients on Molnupiravir (aHR = 1.74; 95% CI: 1.21; 2.50) or Nirmatrelvir/Ritonavir (aHR = 1.96; 95% CI: 1.32; 2.93) were more likely to turn negative earlier than those on Sotrovimab (reference category). Nonetheless, three (aHR = 1.91; 95% CI: 1.33; 2.74) or four (aHR = 2.20; 95% CI: 1.06; 4.59) doses of COVID-19 vaccine were again associated with a faster negativization rate. Only 64.7% of patients were immunized with 3+ doses of COVID-19 vaccines in the present study. Again, the negativization rate was significantly lower if treatment started 3+ days after COVID-19 diagnosis (aHR = 0.54; 95% CI: 0.32; 0.92). Conclusions. Molnupiravir, Nirmatrelvir/Ritonavir, and Sotrovimab were all effective in preventing hospital admission and/or mortality attributable to COVID-19. However, hospitalizations also decreased with higher number of doses of COVID-19 vaccines. Although they are effective against severe disease and mortality, the prescription of antivirals should be carefully scrutinized by double opinion, not only to contain health care costs but also to reduce the risk of generating resistant SARS-CoV-2 strains. Only 64.7% of patients were in fact immunized with 3+ doses of COVID-19 vaccines in the present study. High-risk patients should prioritize COVID-19 vaccination, which is a more cost-effective approach than antivirals against severe SARS-CoV-2 pneumonia. Likewise, although both antivirals, especially Nirmatrelvir/Ritonavir, were more likely than standard of care and Sotrovimab to reduce viral shedding time (VST) in high-risk SARS-CoV-2 patients, vaccination had an independent and stronger effect on viral clearance. However, the effect of antivirals or COVID-19 vaccination on VST should be considered a secondary benefit. Indeed, recommending Nirmatrelvir/Ritonavir in order to control VST in high-risk COVID-19 patients is rather questionable since other cheap, large spectrum and harmless nasal disinfectants such as hypertonic saline solutions are available on the market with proven efficacy in containing VST.
Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life
Luca Cegolon
Writing – Original Draft Preparation
;Omar SimonettiValidation
;Francesca Larese FilonWriting – Review & Editing
;Roberto LuzzatiSupervision
2023-01-01
Abstract
Background. Several drugs which are easy to administer in outpatient settings have been authorized and endorsed for high-risk COVID-19 patients with mild–moderate disease to prevent hospital admission and death, complementing COVID-19 vaccines. However, the evidence on the efficacy of COVID-19 antivirals during the Omicron wave is scanty or conflicting. Methods. This retrospective controlled study investigated the efficacy of Molnupiravir or Nirmatrelvir/Ritonavir (Paxlovid®) or Sotrovimab against standard of care (controls) on three different endpoints among 386 high-risk COVID-19 outpatients: hospital admission at 30 days; death at 30 days; and time between COVID-19 diagnosis and first negative swab test result. Multinomial logistic regression was employed to investigate the determinants of hospitalization due to COVID-19-associated pneumonia, whereas time to first negative swab test result was investigated by means of multinomial logistic analysis as well as Cox regression analysis. Results. Only 11 patients (overall rate of 2.8%) developed severe COVID-19-associated pneumonia requiring admission to hospital: 8 controls (7.2%); 2 patients on Nirmatrelvir/Ritonavir (2.0%); and 1 on Sotrovimab (1.8%). No patient on Molnupiravir was institutionalized. Compared to controls, hospitalization was less likely for patients on Nirmatrelvir/Ritonavir (aOR = 0.16; 95% CI: 0.03; 0.89) or Molnupiravir (omitted estimate); drug efficacy was 84% for Nirmatrelvir/Ritonavir against 100% for Molnupiravir. Only two patients died of COVID-19 (rate of 0.5%), both were controls, one (aged 96 years) was unvaccinated and the other (aged 72 years) had adequate vaccination status. At Cox regression analysis, the negativization rate was significantly higher in patients treated with both antivirals—Nirmatrelvir/Ritonavir (aHR = 1.68; 95% CI: 1.25; 2.26) and Molnupiravir (aHR = 1.45; 95% CI: 1.08; 1.94). However, COVID-19 vaccination with three (aHR = 2.03; 95% CI: 1.51; 2.73) or four (aHR = 2.48; 95% CI: 1.32; 4.68) doses had a stronger effect size on viral clearance. In contrast, the negativization rate reduced significantly in patients who were immune-depressed (aHR = 0.70; 95% CI: 0.52; 0.93) or those with a Charlson index ≥ 3 (aHR = 0.63; 0.41; 0.95) or those who had started the respective treatment course 3+ days after COVID-19 diagnosis (aOR = 0.56; 95% CI: 0.38; 0.82). Likewise, at internal analysis (excluding patients on standard of care), patients on Molnupiravir (aHR = 1.74; 95% CI: 1.21; 2.50) or Nirmatrelvir/Ritonavir (aHR = 1.96; 95% CI: 1.32; 2.93) were more likely to turn negative earlier than those on Sotrovimab (reference category). Nonetheless, three (aHR = 1.91; 95% CI: 1.33; 2.74) or four (aHR = 2.20; 95% CI: 1.06; 4.59) doses of COVID-19 vaccine were again associated with a faster negativization rate. Only 64.7% of patients were immunized with 3+ doses of COVID-19 vaccines in the present study. Again, the negativization rate was significantly lower if treatment started 3+ days after COVID-19 diagnosis (aHR = 0.54; 95% CI: 0.32; 0.92). Conclusions. Molnupiravir, Nirmatrelvir/Ritonavir, and Sotrovimab were all effective in preventing hospital admission and/or mortality attributable to COVID-19. However, hospitalizations also decreased with higher number of doses of COVID-19 vaccines. Although they are effective against severe disease and mortality, the prescription of antivirals should be carefully scrutinized by double opinion, not only to contain health care costs but also to reduce the risk of generating resistant SARS-CoV-2 strains. Only 64.7% of patients were in fact immunized with 3+ doses of COVID-19 vaccines in the present study. High-risk patients should prioritize COVID-19 vaccination, which is a more cost-effective approach than antivirals against severe SARS-CoV-2 pneumonia. Likewise, although both antivirals, especially Nirmatrelvir/Ritonavir, were more likely than standard of care and Sotrovimab to reduce viral shedding time (VST) in high-risk SARS-CoV-2 patients, vaccination had an independent and stronger effect on viral clearance. However, the effect of antivirals or COVID-19 vaccination on VST should be considered a secondary benefit. Indeed, recommending Nirmatrelvir/Ritonavir in order to control VST in high-risk COVID-19 patients is rather questionable since other cheap, large spectrum and harmless nasal disinfectants such as hypertonic saline solutions are available on the market with proven efficacy in containing VST.File | Dimensione | Formato | |
---|---|---|---|
CEgolon 2023 - Pharmaceuticals (Pharmaceutical interventions for high risk COVID-19 patients).pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.