Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4′,5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5- benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates "sticky" pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry host-guest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure. © 2013 American Chemical Society.

Two-dimensional self-assembly of a symmetry-reduced tricarboxylic acid

Rosei F.
2013-01-01

Abstract

Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4′,5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5- benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates "sticky" pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry host-guest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure. © 2013 American Chemical Society.
2013
Pubblicato
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3046260
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact