Photovoltaic devices made of ferroelectric films are being widely studied, due to their efficient charge separation driven by the internal polarization as well as above-bandgap generated photovoltages. These features may enable power conversion efficiencies (PCE) exceeding the Shockley-Queisser limit, which characterizes conventional semiconductor-based solar cells. However, improving the PCE of such devices is still a challenge, mainly due to the weak charge transport and collection induced by the recombination of photocarriers. Here, we fabricated p-i-n heterojunction devices based on double-perovskite multiferroic Bi2FeCrO6 thin films. The latter act as intrinsic absorbers, sandwiched between hole- and electron-transporting layers, a p-type NiO and an n-type Nb-doped SrTiO3 semiconductor, respectively. Under 1 sun illumination, the optimized p-i-n device yields an open-circuit voltage of 0.53 V and a short-circuit current density of 8.0 mA cm-2, leading to a PCE of ca. 2.0%, a four-fold enhancement compared to that of the i-n device architecture.

Multiferroic Bi2FeCrO6 based p-i-n heterojunction photovoltaic devices

Rosei F.;
2017-01-01

Abstract

Photovoltaic devices made of ferroelectric films are being widely studied, due to their efficient charge separation driven by the internal polarization as well as above-bandgap generated photovoltages. These features may enable power conversion efficiencies (PCE) exceeding the Shockley-Queisser limit, which characterizes conventional semiconductor-based solar cells. However, improving the PCE of such devices is still a challenge, mainly due to the weak charge transport and collection induced by the recombination of photocarriers. Here, we fabricated p-i-n heterojunction devices based on double-perovskite multiferroic Bi2FeCrO6 thin films. The latter act as intrinsic absorbers, sandwiched between hole- and electron-transporting layers, a p-type NiO and an n-type Nb-doped SrTiO3 semiconductor, respectively. Under 1 sun illumination, the optimized p-i-n device yields an open-circuit voltage of 0.53 V and a short-circuit current density of 8.0 mA cm-2, leading to a PCE of ca. 2.0%, a four-fold enhancement compared to that of the i-n device architecture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3046332
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 52
social impact