In this note, we give an alternative proof of the theorem on soliton selection for small-energy solutions of nonlinear Schrödinger equations (NLS) studied in (Cuccagna and Maeda, Anal PDE 8(6):1289–1349, 2015; Cuccagna and Maeda, Ann PDE 7:16, 2021). As in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we use the notion of refined profile, but unlike in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we do not modify the modulation coordinates and do not search for Darboux coordinates.
A Note on Small Data Soliton Selection for Nonlinear Schrödinger Equations with Potential
Cuccagna S.
Writing – Original Draft Preparation
;Maeda M.Writing – Original Draft Preparation
2022-01-01
Abstract
In this note, we give an alternative proof of the theorem on soliton selection for small-energy solutions of nonlinear Schrödinger equations (NLS) studied in (Cuccagna and Maeda, Anal PDE 8(6):1289–1349, 2015; Cuccagna and Maeda, Ann PDE 7:16, 2021). As in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we use the notion of refined profile, but unlike in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we do not modify the modulation coordinates and do not search for Darboux coordinates.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
small_no_darboux.pdf
Open Access dal 31/08/2023
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
135.35 kB
Formato
Adobe PDF
|
135.35 kB | Adobe PDF | Visualizza/Apri |
[Springer INdAM Series, 52] Vladimir Georgiev, Alessandro Michelangeli, Raffaele Scandone - Qualitative Properties of Dispersive PDEs (2023, Springer) - libgen.li-1-33.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
609.4 kB
Formato
Adobe PDF
|
609.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.