Background: Assessing prior to surgery the functionality of brain areas exposed near the tumor requires a multimodal approach that combines the use of neuropsychological testing and fMRI tasks. Paradigms based on motor imagery, which corresponds to the ability to mentally evoke a movement, in the absence of actual action execution, can be used to test sensorimotor areas and the functionality of mental motor representations. Methods: The most commonly used paradigm is the Limb Laterality Recognition Task (LLRT), requiring judgments about whether a limb belongs to the left or right side of the body. The group studied included 38 patients with high-grade (N = 21), low-grade (N = 11) gliomas and meningiomas (N = 6) in areas anterior (N = 21) and posterior (N = 17) to the central sulcus. Patients before surgery underwent neuropsychological assessment and fMRI. They performed the LLRT as an fMRI task. Accuracy, and neuroimaging data were collected and combined in a multimodal study. Structural MRI data analyses were performed by subtracting the overlap of volumes of interest (VOIs) plotted on lesions from the impaired patient group vs the overlap of VOIs from the spared group. The fMRI analyses were performed comparing the impaired patients and spared group. Results: In general, patients were within normal limits on many neuropsychological screening tests. Compared with the control group, 17/38 patients had significantly different performance. The subtraction between the VOIs overlay of the impaired patients' group vs. the VOIs overlay of the spared group revealed that the areas maximally involved by lesions in the impaired patients' group were the right postcentral gyrus, right inferior parietal lobe, right supramarginal gyrus, right precentral gyrus, paracentral lobule, left postcentral gyrus, right superior parietal lobe, left inferior parietal lobe, and left superior and middle frontal gyrus. Analysis of the fMRI data showed which of these areas contributes to a correct LLRT performance. The task (vs. rest) in the group comparison (spared vs. impaired patients) activated a cluster in the left inferior parietal lobe. Conclusion: Underlying the altered performance at LLRT in patients with lesions to the parietal and premotor areas of the right and left hemispheres is a difference in activation of the left inferior parietal lobe. This region is involved in visuomotor processes and those related to motor attention, movement selection, and motor planning.

Parietal/premotor lesions effects on visuomotor cognition in neuro-oncology patients: A multimodal study

Bernardis, Paolo
Conceptualization
;
Skrap, Miran
Conceptualization
2023-01-01

Abstract

Background: Assessing prior to surgery the functionality of brain areas exposed near the tumor requires a multimodal approach that combines the use of neuropsychological testing and fMRI tasks. Paradigms based on motor imagery, which corresponds to the ability to mentally evoke a movement, in the absence of actual action execution, can be used to test sensorimotor areas and the functionality of mental motor representations. Methods: The most commonly used paradigm is the Limb Laterality Recognition Task (LLRT), requiring judgments about whether a limb belongs to the left or right side of the body. The group studied included 38 patients with high-grade (N = 21), low-grade (N = 11) gliomas and meningiomas (N = 6) in areas anterior (N = 21) and posterior (N = 17) to the central sulcus. Patients before surgery underwent neuropsychological assessment and fMRI. They performed the LLRT as an fMRI task. Accuracy, and neuroimaging data were collected and combined in a multimodal study. Structural MRI data analyses were performed by subtracting the overlap of volumes of interest (VOIs) plotted on lesions from the impaired patient group vs the overlap of VOIs from the spared group. The fMRI analyses were performed comparing the impaired patients and spared group. Results: In general, patients were within normal limits on many neuropsychological screening tests. Compared with the control group, 17/38 patients had significantly different performance. The subtraction between the VOIs overlay of the impaired patients' group vs. the VOIs overlay of the spared group revealed that the areas maximally involved by lesions in the impaired patients' group were the right postcentral gyrus, right inferior parietal lobe, right supramarginal gyrus, right precentral gyrus, paracentral lobule, left postcentral gyrus, right superior parietal lobe, left inferior parietal lobe, and left superior and middle frontal gyrus. Analysis of the fMRI data showed which of these areas contributes to a correct LLRT performance. The task (vs. rest) in the group comparison (spared vs. impaired patients) activated a cluster in the left inferior parietal lobe. Conclusion: Underlying the altered performance at LLRT in patients with lesions to the parietal and premotor areas of the right and left hemispheres is a difference in activation of the left inferior parietal lobe. This region is involved in visuomotor processes and those related to motor attention, movement selection, and motor planning.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0028393223001331-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 5.23 MB
Formato Adobe PDF
5.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0028393223001331-main-Post_print.pdf

embargo fino al 26/05/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 5.6 MB
Formato Adobe PDF
5.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3046758
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact