The paper presents an overview of the design status of the Radial Neutron Camera (RNC), that, together with the Vertical Neutron Camera, will provide, through reconstruction techniques applied to the measured line-integrated neutron fluxes, the time resolved measurement of the ITER neutron and alpha-source profile (i.e. neutron emissivity, neutrons emitted per unit time and volume). The RNC is composed of two subsystems, the In-Port RNC and Ex-Port RNC located, respectively, inside and outside the Plug of Equatorial Port #01. The In-Port subsystem is in a more advanced design stage since it has recently undergone the Final Design Review in the ITER procurement process. The paper describes the diagnostic layout, the interfaces, the measurement capabilities and the main challenges in its realization. Prototyping and testing of neutron detectors and electronics components were carried out and led to the choice of the component solutions that can match the environmental and operational constraints in terms radiation hardness, high temperature and electromagnetic compatibility. The performance of the RNC in terms of neutron emissivity measurement capability was assessed through 1D and 2D reconstruction analysis. It is proven that the neutron emissivity can be reconstructed in real-time within the measurement requirements: 10% accuracy, 10 ms time resolution and a/10 (a = plasma minor radius) space resolution.

Progress of Design and Development for the ITER Radial Neutron Camera

Gallina, P;Marzullo, D;
2022-01-01

Abstract

The paper presents an overview of the design status of the Radial Neutron Camera (RNC), that, together with the Vertical Neutron Camera, will provide, through reconstruction techniques applied to the measured line-integrated neutron fluxes, the time resolved measurement of the ITER neutron and alpha-source profile (i.e. neutron emissivity, neutrons emitted per unit time and volume). The RNC is composed of two subsystems, the In-Port RNC and Ex-Port RNC located, respectively, inside and outside the Plug of Equatorial Port #01. The In-Port subsystem is in a more advanced design stage since it has recently undergone the Final Design Review in the ITER procurement process. The paper describes the diagnostic layout, the interfaces, the measurement capabilities and the main challenges in its realization. Prototyping and testing of neutron detectors and electronics components were carried out and led to the choice of the component solutions that can match the environmental and operational constraints in terms radiation hardness, high temperature and electromagnetic compatibility. The performance of the RNC in terms of neutron emissivity measurement capability was assessed through 1D and 2D reconstruction analysis. It is proven that the neutron emissivity can be reconstructed in real-time within the measurement requirements: 10% accuracy, 10 ms time resolution and a/10 (a = plasma minor radius) space resolution.
2022
Pubblicato
https://link.springer.com/article/10.1007/s10894-022-00333-9
File in questo prodotto:
File Dimensione Formato  
s10894-022-00333-9.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.98 MB
Formato Adobe PDF
3.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3046879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact