Many proteins involved in synaptic transmission are well known, and their features, as their abundance or spatial distribution, have been analyzed in systematic studies. This has not been the case, however, for their mobility. To solve this, we analyzed the motion of 45 GFP-tagged synaptic proteins expressed in cultured hippocampal neurons, using fluorescence recovery after photobleaching, particle tracking, and modeling. We compared synaptic vesicle proteins, endo- and exocytosis cofactors, cytoskeleton components, and trafficking proteins. We found that movement was influenced by the protein association with synaptic vesicles, especially for membrane proteins. Surprisingly, protein mobility also correlated significantly with parameters as the protein lifetimes, or the nucleotide composition of their mRNAs. We then analyzed protein movement thoroughly, taking into account the spatial characteristics of the system. This resulted in a first visualization of overall protein motion in the synapse, which should enable future modeling studies of synaptic physiology.
A comparative analysis of the mobility of 45 proteins in the synaptic bouton
Fornasiero, Eugenio;
2020-01-01
Abstract
Many proteins involved in synaptic transmission are well known, and their features, as their abundance or spatial distribution, have been analyzed in systematic studies. This has not been the case, however, for their mobility. To solve this, we analyzed the motion of 45 GFP-tagged synaptic proteins expressed in cultured hippocampal neurons, using fluorescence recovery after photobleaching, particle tracking, and modeling. We compared synaptic vesicle proteins, endo- and exocytosis cofactors, cytoskeleton components, and trafficking proteins. We found that movement was influenced by the protein association with synaptic vesicles, especially for membrane proteins. Surprisingly, protein mobility also correlated significantly with parameters as the protein lifetimes, or the nucleotide composition of their mRNAs. We then analyzed protein movement thoroughly, taking into account the spatial characteristics of the system. This resulted in a first visualization of overall protein motion in the synapse, which should enable future modeling studies of synaptic physiology.File | Dimensione | Formato | |
---|---|---|---|
The EMBO Journal - 2020 - Reshetniak - A comparative analysis of the mobility of 45 proteins in the synaptic bouton.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
embj2020104596-sup-0001.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
8.8 MB
Formato
Adobe PDF
|
8.8 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.