We perform a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality property in this case as well. In addition to that, we study the (0, 1)- and (0, 2)-functions in this generalized case, and we show that these unstable cases are correctly reproduced by the spectral curve initial data.
Towards an orbifold generalization of Zvonkine's r-ELSV formula
Lewanski D;
2019-01-01
Abstract
We perform a key step towards the proof of Zvonkine’s conjectural r-ELSV formula that relates Hurwitz numbers with completed (r + 1)-cycles to the geometry of the moduli spaces of the r-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality property in this case as well. In addition to that, we study the (0, 1)- and (0, 2)-functions in this generalized case, and we show that these unstable cases are correctly reproduced by the spectral curve initial data.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
4J_KLPS_Towards.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
329.56 kB
Formato
Adobe PDF
|
329.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.