We study monotone and strictly monotone Hurwitz numbers from a bosonic Fock space perspective. This yields to an interpretation in terms of tropical geometry involving local multiplicities given by Gromov-Witten invariants. Furthermore, this enables us to prove that a main result of Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent to the Gromov-Witten/Hurwitz correspondence by Okounkov-Pandharipande for the equivariant Riemann sphere.
Tropical Jucys covers
Lewanski D
2022-01-01
Abstract
We study monotone and strictly monotone Hurwitz numbers from a bosonic Fock space perspective. This yields to an interpretation in terms of tropical geometry involving local multiplicities given by Gromov-Witten invariants. Furthermore, this enables us to prove that a main result of Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent to the Gromov-Witten/Hurwitz correspondence by Okounkov-Pandharipande for the equivariant Riemann sphere.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00209-021-02940-2.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
381.31 kB
Formato
Adobe PDF
|
381.31 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.