We study monotone and strictly monotone Hurwitz numbers from a bosonic Fock space perspective. This yields to an interpretation in terms of tropical geometry involving local multiplicities given by Gromov-Witten invariants. Furthermore, this enables us to prove that a main result of Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent to the Gromov-Witten/Hurwitz correspondence by Okounkov-Pandharipande for the equivariant Riemann sphere.

Tropical Jucys covers

Lewanski D
2022-01-01

Abstract

We study monotone and strictly monotone Hurwitz numbers from a bosonic Fock space perspective. This yields to an interpretation in terms of tropical geometry involving local multiplicities given by Gromov-Witten invariants. Furthermore, this enables us to prove that a main result of Cavalieri-Johnson-Markwig-Ranganathan is actually equivalent to the Gromov-Witten/Hurwitz correspondence by Okounkov-Pandharipande for the equivariant Riemann sphere.
2022
Pubblicato
https://link.springer.com/article/10.1007/s00209-021-02940-2
File in questo prodotto:
File Dimensione Formato  
s00209-021-02940-2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 381.31 kB
Formato Adobe PDF
381.31 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3047179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact