We address Hodge integrals over the hyperelliptic locus. Recently Afandi computed, via localisation techniques, such one-descendant integrals and showed that they are Stirling numbers. We give another proof of the same statement by a very short argument, exploiting Chern classes of spin structures and relations arising from Topological Recursion in the sense of Eynard and Orantin.These techniques seem also suitable to deal with three orthogonal generalisations: (1) the extension to the r-hyperelliptic locus; (2) the extension to an arbitrary number of non-Weierstrass pairs of points; (3) the extension to multiple descendants.

On some hyperelliptic Hurwitz-Hodge integrals

Lewanski, D
2023-01-01

Abstract

We address Hodge integrals over the hyperelliptic locus. Recently Afandi computed, via localisation techniques, such one-descendant integrals and showed that they are Stirling numbers. We give another proof of the same statement by a very short argument, exploiting Chern classes of spin structures and relations arising from Topological Recursion in the sense of Eynard and Orantin.These techniques seem also suitable to deal with three orthogonal generalisations: (1) the extension to the r-hyperelliptic locus; (2) the extension to an arbitrary number of non-Weierstrass pairs of points; (3) the extension to multiple descendants.
File in questo prodotto:
File Dimensione Formato  
15J_Cambridge.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 198.55 kB
Formato Adobe PDF
198.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3047182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact