Background Most of the cells of the mammalian retina are terminally differentiated, and do not regenerate once fully developed. This implies that these cells have strict controls over their metabolic processes, including protein turnover. We report the use of metabolic labelling procedures and secondary ion mass spectrometry imaging to examine nitrogen turnover in retinal cells, with a focus on the outer nuclear layer, inner nuclear layer, and outer plexiform layer. Results We find that turnover can be observed in all cells imaged using NanoSIMS. However, the rate of turnover is not constant, but varies between different cellular types and cell regions. In the inner and outer nuclear layers, turnover rate is higher in the cytosol than in the nucleus of each cell. Turnover rates are also higher in the outer plexiform layer. An examination of retinal cells from mice that were isotopically labeled very early in embryonic development shows that proteins produced during this period can be found in all cells and cell regions up to 2 months after birth, even in regions of high turnover. Conclusions Our results indicate that turnover in retinal cells is a highly regulated process, with strict metabolic controls. We also observe that turnover is several-fold higher in the synaptic layer than in cell layers. Nevertheless, embryonic proteins can still be found in this layer 2 months after birth, suggesting that stable structures persist within the synapses, which remain to be determined.

NanoSIMS observations of mouse retinal cells reveal strict metabolic controls on nitrogen turnover

Fornasiero, Eugenio;
2021-01-01

Abstract

Background Most of the cells of the mammalian retina are terminally differentiated, and do not regenerate once fully developed. This implies that these cells have strict controls over their metabolic processes, including protein turnover. We report the use of metabolic labelling procedures and secondary ion mass spectrometry imaging to examine nitrogen turnover in retinal cells, with a focus on the outer nuclear layer, inner nuclear layer, and outer plexiform layer. Results We find that turnover can be observed in all cells imaged using NanoSIMS. However, the rate of turnover is not constant, but varies between different cellular types and cell regions. In the inner and outer nuclear layers, turnover rate is higher in the cytosol than in the nucleus of each cell. Turnover rates are also higher in the outer plexiform layer. An examination of retinal cells from mice that were isotopically labeled very early in embryonic development shows that proteins produced during this period can be found in all cells and cell regions up to 2 months after birth, even in regions of high turnover. Conclusions Our results indicate that turnover in retinal cells is a highly regulated process, with strict metabolic controls. We also observe that turnover is several-fold higher in the synaptic layer than in cell layers. Nevertheless, embryonic proteins can still be found in this layer 2 months after birth, suggesting that stable structures persist within the synapses, which remain to be determined.
File in questo prodotto:
File Dimensione Formato  
s12860-020-00339-1.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri
12860_2020_339_MOESM1_ESM.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3047499
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact