Background: KEAP1 mutations have been associated with reduced survival in lung adenocarcinoma (LUAD) patients treated with immune checkpoint inhibitors (ICIs), particularly in the presence of STK11/KRAS alterations. We hypothesized that, beyond co-occurring genomic events, clonality prediction may help identify deleterious KEAP1 mutations and their counterparts with retained sensitivity to ICIs.Patients and methods: Beta-binomial modelling of sequencing read counts was used to infer KEAP1 clonal inactivation by combined somatic mutation and loss of heterozygosity (KEAP1 C-LOH) versus partial inactivation [KEAP1 clonal diploid-subclonal (KEAP1 CD-SC)] in the Memorial Sloan Kettering Cancer Center (MSK) MetTropism cohort (N = 2550). Clonality/ LOH prediction was compared to a streamlined clinical classifier that relies on variant allele frequencies (VAFs) and tumor purity (TP) (VAF/TP ratio). The impact of this classification on survival outcomes was tested in two independent cohorts of LUAD patients treated with immunotherapy (MSK/Rome N = 237; DFCI N = 461). Immune-related features were studied by exploiting RNA-sequencing data (TCGA) and multiplexed immunofluorescence (DFCI mIF cohort).Results: Clonality/LOH inference in the MSK MetTropism cohort overlapped with a clinical classification model defined by the VAF/TP ratio. In the ICI-treated MSK/Rome discovery cohort, predicted KEAP1 C-LOH mutations were associated with shorter progression-free survival (PFS) and overall survival (OS) compared to KEAP1 wild-type cases (PFS log-rank P = 0.001; OS log-rank P < 0.001). Similar results were obtained in the DFCI validation cohort (PFS log-rank P = 0.006; OS log-rank P = 0.014). In both cohorts, we did not observe any significant difference in survival outcomes when comparing KEAP1 CD-SC and wild-type tumors. Immune deconvolution and multiplexed immunofluorescence revealed that KEAP1 C-LOH and KEAP1 CD-SC differed for immune-related features.Conclusions: KEAP1 C-LOH mutations are associated with an immune-excluded phenotype and worse clinical outcomes among advanced LUAD patients treated with ICIs. By contrast, survival outcomes of patients whose tumors harbored KEAP1 CD-SC mutations were similar to those with KEAP1 wild-type LUADs.

Clonal KEAP1 mutations with loss of heterozygosity share reduced immunotherapy efficacy and low immune cell infiltration in lung adenocarcinoma

Calonaci, N;De Nicola, F;Caravagna, G;Ciliberto, G;
2023-01-01

Abstract

Background: KEAP1 mutations have been associated with reduced survival in lung adenocarcinoma (LUAD) patients treated with immune checkpoint inhibitors (ICIs), particularly in the presence of STK11/KRAS alterations. We hypothesized that, beyond co-occurring genomic events, clonality prediction may help identify deleterious KEAP1 mutations and their counterparts with retained sensitivity to ICIs.Patients and methods: Beta-binomial modelling of sequencing read counts was used to infer KEAP1 clonal inactivation by combined somatic mutation and loss of heterozygosity (KEAP1 C-LOH) versus partial inactivation [KEAP1 clonal diploid-subclonal (KEAP1 CD-SC)] in the Memorial Sloan Kettering Cancer Center (MSK) MetTropism cohort (N = 2550). Clonality/ LOH prediction was compared to a streamlined clinical classifier that relies on variant allele frequencies (VAFs) and tumor purity (TP) (VAF/TP ratio). The impact of this classification on survival outcomes was tested in two independent cohorts of LUAD patients treated with immunotherapy (MSK/Rome N = 237; DFCI N = 461). Immune-related features were studied by exploiting RNA-sequencing data (TCGA) and multiplexed immunofluorescence (DFCI mIF cohort).Results: Clonality/LOH inference in the MSK MetTropism cohort overlapped with a clinical classification model defined by the VAF/TP ratio. In the ICI-treated MSK/Rome discovery cohort, predicted KEAP1 C-LOH mutations were associated with shorter progression-free survival (PFS) and overall survival (OS) compared to KEAP1 wild-type cases (PFS log-rank P = 0.001; OS log-rank P < 0.001). Similar results were obtained in the DFCI validation cohort (PFS log-rank P = 0.006; OS log-rank P = 0.014). In both cohorts, we did not observe any significant difference in survival outcomes when comparing KEAP1 CD-SC and wild-type tumors. Immune deconvolution and multiplexed immunofluorescence revealed that KEAP1 C-LOH and KEAP1 CD-SC differed for immune-related features.Conclusions: KEAP1 C-LOH mutations are associated with an immune-excluded phenotype and worse clinical outcomes among advanced LUAD patients treated with ICIs. By contrast, survival outcomes of patients whose tumors harbored KEAP1 CD-SC mutations were similar to those with KEAP1 wild-type LUADs.
File in questo prodotto:
File Dimensione Formato  
3055619-2-15.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 7 MB
Formato Adobe PDF
7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3047905
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact