Soil microbiota is a crucial component of agroecosystem biodiversity, enhancing plant growth and providing important services in agriculture. However, its characterization is demanding and relatively expensive. In this study, we evaluated whether arable plant communities can be used as a surrogate of bacterial and fungal communities of the rhizosphere of Elephant Garlic (Allium ampeloprasum L.), a traditional crop plant of central Italy. We sampled plant, bacterial, and fungal communities, i.e., the groups of such organisms co-existing in space and time, in 24 plots located in eight fields and four farms. At the plot level, no correlations in species richness emerged, while the composition of plant communities was correlated with that of both bacterial and fungal communities. As regards plants and bacteria, such correlation was mainly driven by similar responses to geographic and environmental factors, while fungal communities seemed to be correlated in species composition with both plants and bacteria due to biotic interactions. All the correlations in species composition were unaffected by the number of fertilizer and herbicide applications, i.e., agricultural intensity. Besides correlations, we detected a predictive relationship of plant community composition towards fungal community composition. Our results highlight the potential of arable plant communities to be used as a surrogate of crop rhizosphere microbial communities in agroecosystems.
Arable plant communities as a surrogate of crop rhizosphere microbiota
Tordoni E;Bacaro G;Loppi S;Marignani M;Muggia L;Maccherini S.
2023-01-01
Abstract
Soil microbiota is a crucial component of agroecosystem biodiversity, enhancing plant growth and providing important services in agriculture. However, its characterization is demanding and relatively expensive. In this study, we evaluated whether arable plant communities can be used as a surrogate of bacterial and fungal communities of the rhizosphere of Elephant Garlic (Allium ampeloprasum L.), a traditional crop plant of central Italy. We sampled plant, bacterial, and fungal communities, i.e., the groups of such organisms co-existing in space and time, in 24 plots located in eight fields and four farms. At the plot level, no correlations in species richness emerged, while the composition of plant communities was correlated with that of both bacterial and fungal communities. As regards plants and bacteria, such correlation was mainly driven by similar responses to geographic and environmental factors, while fungal communities seemed to be correlated in species composition with both plants and bacteria due to biotic interactions. All the correlations in species composition were unaffected by the number of fertilizer and herbicide applications, i.e., agricultural intensity. Besides correlations, we detected a predictive relationship of plant community composition towards fungal community composition. Our results highlight the potential of arable plant communities to be used as a surrogate of crop rhizosphere microbial communities in agroecosystems.File | Dimensione | Formato | |
---|---|---|---|
Fanfarillo_etAl_ArablePlantCommunitiesSurrogateMicrobiota_STOTEN_2023.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
894.19 kB
Formato
Adobe PDF
|
894.19 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.