We analyze the validity of the theorems concerning the cancellation of the infrared and collinar divergences in the case of dark matter freeze-out in the early universe. In particular, we compute the electroweak logarithmic corrections of infrared origin to the annihilation cross section of a dark matter particle being the neutral component of a SU(2)(L) multiplet. The inclusion of processes with final state W can modify significantly the cross sections computed with only virtual W exchange. Our results show that the inclusion of infrared logs is necessary for a precise computation of the dark matter relic abundance.
The Role of Electroweak Corrections for the Dark Matter Relic Abundance
Morgante E;
2013-01-01
Abstract
We analyze the validity of the theorems concerning the cancellation of the infrared and collinar divergences in the case of dark matter freeze-out in the early universe. In particular, we compute the electroweak logarithmic corrections of infrared origin to the annihilation cross section of a dark matter particle being the neutral component of a SU(2)(L) multiplet. The inclusion of processes with final state W can modify significantly the cross sections computed with only virtual W exchange. Our results show that the inclusion of infrared logs is necessary for a precise computation of the dark matter relic abundance.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.