The antiparticle-over-particle multiplicity ratio is measured in deep-inelastic scattering for negatively and positively charged kaons and, for the first time, for antiprotons and protons. The data were obtained by the COMPASS Collaboration using a 160 GeV muon beam impinging on an isoscalar 6LiD target. The regime of deep-inelastic scattering is ensured by requiring Q2 > 1 (GeV/c)2 for the photon virtuality and W>5 GeV/c2 for the invariant mass of the produced hadronic system. Bjorken-x is restricted to the range 0.01 to 0.40. Protons and antiprotons are identified in the momentum range from 20 GeV/c to 60 GeV/c and required to carry a large fraction of the virtual-photon energy, z>0.5. In the whole studied z-region, the p¯ over p multiplicity ratio is found to be below the lower limit expected from calculations based on leading-order perturbative Quantum Chromodynamics (pQCD). Kaons were previously analysed in the momentum range 12 GeV/c to 40 GeV/c. In the present analysis this range is extended up to 55 GeV/c, whereby events with larger virtual-photon energies are included in the analysis and the observed K− over K+ ratio becomes closer to the expectation of next-to-leading order pQCD. The results of both analyses strengthen our earlier conclusion that at COMPASS energies the phase space available for single-hadron production in deep-inelastic scattering should be taken into account in the standard pQCD formalism.

Antiproton over proton and K− over K+ multiplicity ratios at high z in DIS

Bradamante F.;Bressan A.;Chatterjee C.;D'Ago D.;Dalla Torre S.;Dasgupta S. S.;Kerbizi A.;Levorato S.;Makke N.;Martin A.;Matousek J.;Moretti A.;Sbrizzai G.;
2020-01-01

Abstract

The antiparticle-over-particle multiplicity ratio is measured in deep-inelastic scattering for negatively and positively charged kaons and, for the first time, for antiprotons and protons. The data were obtained by the COMPASS Collaboration using a 160 GeV muon beam impinging on an isoscalar 6LiD target. The regime of deep-inelastic scattering is ensured by requiring Q2 > 1 (GeV/c)2 for the photon virtuality and W>5 GeV/c2 for the invariant mass of the produced hadronic system. Bjorken-x is restricted to the range 0.01 to 0.40. Protons and antiprotons are identified in the momentum range from 20 GeV/c to 60 GeV/c and required to carry a large fraction of the virtual-photon energy, z>0.5. In the whole studied z-region, the p¯ over p multiplicity ratio is found to be below the lower limit expected from calculations based on leading-order perturbative Quantum Chromodynamics (pQCD). Kaons were previously analysed in the momentum range 12 GeV/c to 40 GeV/c. In the present analysis this range is extended up to 55 GeV/c, whereby events with larger virtual-photon energies are included in the analysis and the observed K− over K+ ratio becomes closer to the expectation of next-to-leading order pQCD. The results of both analyses strengthen our earlier conclusion that at COMPASS energies the phase space available for single-hadron production in deep-inelastic scattering should be taken into account in the standard pQCD formalism.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0370269320304044-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 628.51 kB
Formato Adobe PDF
628.51 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3051081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact