Triple Negative Breast Cancer (TNBC) is a challenging disease due to the lack of druggable targets; therefore, chemotherapy remains the standard of care and the identification of new targets is a high clinical priority. Alterations in the components of the cell cycle machinery have been frequently reported in cancer; given the success obtained with the CDK4/6 inhibitor palbocicib in ER-positive BC, we explored the potential of combining this drug with chemotherapy in Rb-positive TNBC cell models. The simultaneous combination of palbociclib with paclitaxel exerted an antagonistic effect; by contrast, the sequential treatment inhibited cell proliferation and increased cell death more efficaciously than single treatments. By down-regulating the E2F target c-myc, palbociclib reduced HIF-1 alpha and GLUT-1 expression, and hence glucose uptake and consumption both under normoxic and hypoxic conditions. Importantly, these inhibitory effects on glucose metabolism were enhanced by palbociclib/paclitaxel sequential combination; the superior efficacy of such combination was ascribed to the ability of paclitaxel to inhibit palbociclib-mediated induction of AKT and to further down-regulate the Rb/E2F/c-myc signaling. Our results suggest that the efficacy of standard chemotherapy can be significantly improved by a pre-treatment with palbociclib, thus offering a better therapeutic option for Rb-proficient TNBC.

Pre-treatment with the CDK4/6 inhibitor palbociclib improves the efficacy of paclitaxel in TNBC cells

Galetti M.;Generali D.;
2019-01-01

Abstract

Triple Negative Breast Cancer (TNBC) is a challenging disease due to the lack of druggable targets; therefore, chemotherapy remains the standard of care and the identification of new targets is a high clinical priority. Alterations in the components of the cell cycle machinery have been frequently reported in cancer; given the success obtained with the CDK4/6 inhibitor palbocicib in ER-positive BC, we explored the potential of combining this drug with chemotherapy in Rb-positive TNBC cell models. The simultaneous combination of palbociclib with paclitaxel exerted an antagonistic effect; by contrast, the sequential treatment inhibited cell proliferation and increased cell death more efficaciously than single treatments. By down-regulating the E2F target c-myc, palbociclib reduced HIF-1 alpha and GLUT-1 expression, and hence glucose uptake and consumption both under normoxic and hypoxic conditions. Importantly, these inhibitory effects on glucose metabolism were enhanced by palbociclib/paclitaxel sequential combination; the superior efficacy of such combination was ascribed to the ability of paclitaxel to inhibit palbociclib-mediated induction of AKT and to further down-regulate the Rb/E2F/c-myc signaling. Our results suggest that the efficacy of standard chemotherapy can be significantly improved by a pre-treatment with palbociclib, thus offering a better therapeutic option for Rb-proficient TNBC.
File in questo prodotto:
File Dimensione Formato  
41598_2019_Article_49484.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3053160
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 57
social impact