We explore the electroweak vacuum stability in the framework of a recently proposed paradigm for the origin of Yukawa couplings. These arise as low energy effective couplings radiatively generated by portal interactions with a hidden, or dark, sector at the one-loop level. Possible tree-level Yukawa couplings are forbidden by a new underlying symmetry, assumed to be spontaneously broken by the vacuum expectation value of a new scalar field above the electroweak scale. As a consequence, the top Yukawa interaction ceases to behave as a local operator at energies above the new sector scale and, therefore, cannot contribute to the running of the quartic Higgs coupling at higher energies. By studying two complementary scenarios, we explicitly show that the framework can achieve the stability of the electroweak vacuum without particular tuning of parameters. The proposed mechanism requires the existence of a dark sector and new portal messenger scalar interactions that, connecting the Standard Model to the dark sector fields, could be tested at the LHC and future collider experiments.

Vacuum stability with radiative Yukawa couplings

Gabrielli, E
Membro del Collaboration Group
;
2022-01-01

Abstract

We explore the electroweak vacuum stability in the framework of a recently proposed paradigm for the origin of Yukawa couplings. These arise as low energy effective couplings radiatively generated by portal interactions with a hidden, or dark, sector at the one-loop level. Possible tree-level Yukawa couplings are forbidden by a new underlying symmetry, assumed to be spontaneously broken by the vacuum expectation value of a new scalar field above the electroweak scale. As a consequence, the top Yukawa interaction ceases to behave as a local operator at energies above the new sector scale and, therefore, cannot contribute to the running of the quartic Higgs coupling at higher energies. By studying two complementary scenarios, we explicitly show that the framework can achieve the stability of the electroweak vacuum without particular tuning of parameters. The proposed mechanism requires the existence of a dark sector and new portal messenger scalar interactions that, connecting the Standard Model to the dark sector fields, could be tested at the LHC and future collider experiments.
File in questo prodotto:
File Dimensione Formato  
JHEP-01-2022-142.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 974.82 kB
Formato Adobe PDF
974.82 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3055419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact