Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research. Usual strategies, essentially based on machine learning (ML) algorithms, commonly classify a subject as being either healthy or pathologically-affected. Nevertheless, the latter state is not always a result of a sole laryngeal issue, i.e., multiple disorders might exist, demanding multi-label classification procedures for effective diagnoses. Consequently, the objective of this paper is to investigate the application of five multi-label classification methods based on problem transformation to play the role of base-learners, i.e., Label Powerset, Binary Relevance, Nested Stacking, Classifier Chains, and Dependent Binary Relevance with Random Forest (RF) and Support Vector Machine (SVM), in addition to a Deep Neural Network (DNN) from an algorithm adaptation method, to detect multiple voice disorders, i.e., Dysphonia, Laryngitis, Reinke's Edema, Vox Senilis, and Central Laryngeal Motion Disorder. Receiving as input three handcrafted features, i.e., signal energy (SE), zero-crossing rates (ZCRs), and signal entropy (SH), which allow for interpretable descriptors in terms of speech analysis, production, and perception, we observed that the DNN-based approach powered with SE-based feature vectors presented the best values of F1-score among the tested methods, i.e., 0.943, as the averaged value from all the balancing scenarios, under Saarbrücken Voice Database (SVD) and considering 20% of balancing rate with Synthetic Minority Over-sampling Technique (SMOTE). Finally, our findings of most false negatives for laryngitis may explain the reason why its detection is a serious issue in speech technology. The results we report provide an original contribution, allowing for the consistent detection of multiple speech pathologies and advancing the state-of-the-art in the field of handcrafted acoustic-based non-invasive diagnosis of voice disorders.

Multiple voice disorders in the same individual: Investigating handcrafted features, multi-label classification algorithms, and base-learners

Barbon S.;
2023-01-01

Abstract

Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research. Usual strategies, essentially based on machine learning (ML) algorithms, commonly classify a subject as being either healthy or pathologically-affected. Nevertheless, the latter state is not always a result of a sole laryngeal issue, i.e., multiple disorders might exist, demanding multi-label classification procedures for effective diagnoses. Consequently, the objective of this paper is to investigate the application of five multi-label classification methods based on problem transformation to play the role of base-learners, i.e., Label Powerset, Binary Relevance, Nested Stacking, Classifier Chains, and Dependent Binary Relevance with Random Forest (RF) and Support Vector Machine (SVM), in addition to a Deep Neural Network (DNN) from an algorithm adaptation method, to detect multiple voice disorders, i.e., Dysphonia, Laryngitis, Reinke's Edema, Vox Senilis, and Central Laryngeal Motion Disorder. Receiving as input three handcrafted features, i.e., signal energy (SE), zero-crossing rates (ZCRs), and signal entropy (SH), which allow for interpretable descriptors in terms of speech analysis, production, and perception, we observed that the DNN-based approach powered with SE-based feature vectors presented the best values of F1-score among the tested methods, i.e., 0.943, as the averaged value from all the balancing scenarios, under Saarbrücken Voice Database (SVD) and considering 20% of balancing rate with Synthetic Minority Over-sampling Technique (SMOTE). Finally, our findings of most false negatives for laryngitis may explain the reason why its detection is a serious issue in speech technology. The results we report provide an original contribution, allowing for the consistent detection of multiple speech pathologies and advancing the state-of-the-art in the field of handcrafted acoustic-based non-invasive diagnosis of voice disorders.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167639323000869-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0167639323000869-main-Post_print.pdf

Open Access dal 21/06/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3055525
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact