Cocoa hybridisation generates new varieties which are resistant to several plant diseases, but has individual chemical characteristics that affect chocolate production. Image analysis is a useful method for visual discrimination of cocoa beans, while deep learning (DL) has emerged as the de facto technique for image processing. However, these algorithms require a large amount of data and careful tuning of hyperparameters. Since it is necessary to acquire a large number of images to encompass the wide range of agricultural products, in this paper, we compare a Deep Computer Vision System (DCVS) and a traditional Computer Vision System (CVS) to classify cocoa beans into different varieties. For DCVS, we used a Resnet18 and Resnet50 as backbone, while for CVS, we experimented traditional machine learning algorithms, Support Vector Machine (SVM), and Random Forest (RF). All the algorithms were selected since they provide good classification performance and their potential application for food classification A dataset with 1,239 samples was used to evaluate both systems. The best accuracy was 96.82% for DCVS (ResNet 18), compared to 85.71% obtained by the CVS using SVM. The essential handcrafted features were reported and discussed regarding their influence on cocoa bean classification. Class Activation Maps was applied to DCVS’s predictions, providing a meaningful visualisation of the most important regions of the images in the model.

Deep computer vision system for cocoa classification

Barbon Junior S.
2022-01-01

Abstract

Cocoa hybridisation generates new varieties which are resistant to several plant diseases, but has individual chemical characteristics that affect chocolate production. Image analysis is a useful method for visual discrimination of cocoa beans, while deep learning (DL) has emerged as the de facto technique for image processing. However, these algorithms require a large amount of data and careful tuning of hyperparameters. Since it is necessary to acquire a large number of images to encompass the wide range of agricultural products, in this paper, we compare a Deep Computer Vision System (DCVS) and a traditional Computer Vision System (CVS) to classify cocoa beans into different varieties. For DCVS, we used a Resnet18 and Resnet50 as backbone, while for CVS, we experimented traditional machine learning algorithms, Support Vector Machine (SVM), and Random Forest (RF). All the algorithms were selected since they provide good classification performance and their potential application for food classification A dataset with 1,239 samples was used to evaluate both systems. The best accuracy was 96.82% for DCVS (ResNet 18), compared to 85.71% obtained by the CVS using SVM. The essential handcrafted features were reported and discussed regarding their influence on cocoa bean classification. Class Activation Maps was applied to DCVS’s predictions, providing a meaningful visualisation of the most important regions of the images in the model.
2022
Pubblicato
https://link.springer.com/article/10.1007/s11042-022-13097-3
File in questo prodotto:
File Dimensione Formato  
s11042-022-13097-3.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3055529
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact