This paper introduces a very fast method for the computation of the resolvent of fractional powers of operators. The analysis is kept in the continuous setting of (potentially unbounded) self-adjoint positive operators in Hilbert spaces. The method is based on the Gauss-Laguerre rule, exploiting a particular integral representation of the resolvent. We provide sharp error estimates that can be used to a priori select the number of nodes to achieve a prescribed tolerance.

A Gauss-Laguerre approach for the resolvent of fractional powers

Denich, Eleonora
;
Dolce, Laura Grazia;Novati, Paolo
2023-01-01

Abstract

This paper introduces a very fast method for the computation of the resolvent of fractional powers of operators. The analysis is kept in the continuous setting of (potentially unbounded) self-adjoint positive operators in Hilbert spaces. The method is based on the Gauss-Laguerre rule, exploiting a particular integral representation of the resolvent. We provide sharp error estimates that can be used to a priori select the number of nodes to achieve a prescribed tolerance.
2023
21-ago-2023
Pubblicato
File in questo prodotto:
File Dimensione Formato  
ETNA2023.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 579.16 kB
Formato Adobe PDF
579.16 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3055778
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact