This paper deals with the computation of the Lerch transcendent by means of the GaussLaguerre formula. An a priori estimate of the quadrature error, that allows to compute the number of quadrature nodes necessary to achieve an arbitrary precision, is derived. Exploiting the properties of the Gauss-Laguerre rule and the error estimate, a truncated approach is also considered. The algorithm used and its Matlab implementation are reported. The numerical examples confirm the reliability of this approach.

A fast and simple algorithm for the computation of the Lerch transcendent

Denich E.
;
Novati P.
2024-01-01

Abstract

This paper deals with the computation of the Lerch transcendent by means of the GaussLaguerre formula. An a priori estimate of the quadrature error, that allows to compute the number of quadrature nodes necessary to achieve an arbitrary precision, is derived. Exploiting the properties of the Gauss-Laguerre rule and the error estimate, a truncated approach is also considered. The algorithm used and its Matlab implementation are reported. The numerical examples confirm the reliability of this approach.
2024
14-ago-2023
Pubblicato
File in questo prodotto:
File Dimensione Formato  
s11075-023-01637-3.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 763.47 kB
Formato Adobe PDF
763.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3055779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact