This paper deals with the computation of the Lerch transcendent by means of the GaussLaguerre formula. An a priori estimate of the quadrature error, that allows to compute the number of quadrature nodes necessary to achieve an arbitrary precision, is derived. Exploiting the properties of the Gauss-Laguerre rule and the error estimate, a truncated approach is also considered. The algorithm used and its Matlab implementation are reported. The numerical examples confirm the reliability of this approach.
A fast and simple algorithm for the computation of the Lerch transcendent
Denich E.
;Novati P.
2024-01-01
Abstract
This paper deals with the computation of the Lerch transcendent by means of the GaussLaguerre formula. An a priori estimate of the quadrature error, that allows to compute the number of quadrature nodes necessary to achieve an arbitrary precision, is derived. Exploiting the properties of the Gauss-Laguerre rule and the error estimate, a truncated approach is also considered. The algorithm used and its Matlab implementation are reported. The numerical examples confirm the reliability of this approach.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11075-023-01637-3.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
763.47 kB
Formato
Adobe PDF
|
763.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.