In high energy physics experiments, calorimeters are calibrated to produce precise and accurate results. Laser light can be used for calibration when the detectors are sensitive to photons in that particular energy range, which is often the case. Moreover, it is not unusual that detection systems consist of hundreds of channels that have to be calibrated independently, which produce stringent requirements on the light distribution system in terms of temporal and spatial stability, energy distribution and timing. Furthermore, the economic factor and the ease of production have to be taken into account. We present a prototype light distribution system, based on a series of optical beamsplitters, developed for the Muon g-2 experiment at Fermilab.
An approach to light distribution for the calibration of high energy physics calorimeters
Cantatore G.;
2020-01-01
Abstract
In high energy physics experiments, calorimeters are calibrated to produce precise and accurate results. Laser light can be used for calibration when the detectors are sensitive to photons in that particular energy range, which is often the case. Moreover, it is not unusual that detection systems consist of hundreds of channels that have to be calibrated independently, which produce stringent requirements on the light distribution system in terms of temporal and spatial stability, energy distribution and timing. Furthermore, the economic factor and the ease of production have to be taken into account. We present a prototype light distribution system, based on a series of optical beamsplitters, developed for the Muon g-2 experiment at Fermilab.File | Dimensione | Formato | |
---|---|---|---|
An-approach-to-light-distribution-for-the-calibration-of-high-energy-physics-calorimetersJournal-of-Instrumentation_r.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
3.36 MB
Formato
Adobe PDF
|
3.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
post print manuscript.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
11.38 MB
Formato
Adobe PDF
|
11.38 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.