We study schemes of tensor eigenvectors from an algebraic and geometric viewpoint. We characterize determinantal defining equations of such eigenschemes via linear equations in their coefficients, both in the general and in the symmetric case. We give a geometric necessary condition for a 0-dimensional scheme to be an eigenscheme.
Equations of tensor eigenschemes
Valentina BeorchiaMembro del Collaboration Group
;Francesco Galuppi
Membro del Collaboration Group
;
2024-01-01
Abstract
We study schemes of tensor eigenvectors from an algebraic and geometric viewpoint. We characterize determinantal defining equations of such eigenschemes via linear equations in their coefficients, both in the general and in the symmetric case. We give a geometric necessary condition for a 0-dimensional scheme to be an eigenscheme.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
S0025-5718-2023-03882-0.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
235.64 kB
Formato
Adobe PDF
|
235.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.