We study schemes of tensor eigenvectors from an algebraic and geometric viewpoint. We characterize determinantal defining equations of such eigenschemes via linear equations in their coefficients, both in the general and in the symmetric case. We give a geometric necessary condition for a 0-dimensional scheme to be an eigenscheme.

Equations of tensor eigenschemes

Valentina Beorchia
Membro del Collaboration Group
;
Francesco Galuppi
Membro del Collaboration Group
;
2024-01-01

Abstract

We study schemes of tensor eigenvectors from an algebraic and geometric viewpoint. We characterize determinantal defining equations of such eigenschemes via linear equations in their coefficients, both in the general and in the symmetric case. We give a geometric necessary condition for a 0-dimensional scheme to be an eigenscheme.
File in questo prodotto:
File Dimensione Formato  
S0025-5718-2023-03882-0.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 235.64 kB
Formato Adobe PDF
235.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3057418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact