This thesis proposes an alternative approach to bacteria detection; our proposed strategy primarily aims at the recognition of negative charges and hydrophobic patterns of the bacterial cell wall by using a library of positively charged gold nanoparticles (AuNPs) interacting non covalently with a specific fluorophore. The innovation of this approach is based on the use of mixed-monolayer AuNPs featuring fluorinated ligands in the protective shell which allow to modulate the hydrophobicity of the AuNPs outer surface providing an additional recognition mechanism. The first part of the project has been focused on the design and preparation of a library of cationic homoligand AuNPs and heteroligand AuNPs bearing hydrogenated (H-) and fluorinated (F-) ligands on their mixed monolayer. For both nanoparticles, the positive charges are provided by the H- ligands possessing a permanent quaternary ammonium group as end-group, which allows no-specific electrostatic interactions with the negatively charged groups present on the bacterial outer membrane. On the other hand, diverse H-/F- ratios have been used to prepare water-soluble heteroligand AuNPs aiming to modulate the hydrophobic properties of the AuNP surface. The development of a transduction mechanism to detect the AuNPs-bacteria recognition event has been carried out, exploiting the peculiar property of the AuNPs to act as a quencher towards numerous fluorophores. For this purpose, the AuNPs quenching efficiency has been tested toward two organic dyes and an anionic fluorescent polymer (PPP-OSO3) by fluorescence titrations, whose results have underlined the higher quenching efficacy of all AuNPs toward PPP-OSO3. Subsequently, the activities have been focused on the interaction studies between the AuNPs-polymer constructs and anionic liposomes, whose purpose is to act as bacterial membrane models. Two different anionic liposomes composed of POPG and a mixture of POPC/POPG have been prepared to achieve different surface charges. By fluorescence titrations of liposome-AuNPs solution with PPP-OSO3, it has been observed that the quenching ability of the cationic AuNPs towards PPP-OSO3 is markedly reduced in the presence of anionic liposomes, indicating an interaction of the nanoparticles with these systems, especially in case of AuNPs bearing fluorinated ligands. Within the time span of this PhD thesis, preliminary biological tests have been to analyse the quenching efficiency of the AuNPs toward PPP-OSO3 in the presence of different bacterial strains encompassing Gram positive, Gram negative and mycobacteria. The second part of the project has been focused on the development of a new type of activated gold nanoparticles (AuNPs) and their functionalization with bio-inspired peptide-based cationic ligands, exploring other synthetic strategies for AuNP preparation. In detail, peptide-decorated AuNPs have been designed to improve the specific-site interactions with the elements present on the bacterial membranes and to increase the diversity in the gold nanoparticles library. For the preparation of these AuNPs, an innovative approach based on the Staudinger-Bertozzi click chemistry reaction has been pursued in order to optimize the AuNP functionalization. The proposed strategy is based on the preparation of activated AuNPs, whose surface is decorated with an appropriately substituted triarylphosphine, and on the synthesis of azide-containing peptides. Both homoligand and heteroligand activated-AuNPs have been synthesised to evaluate and optimize the stability of these systems.

In questo contesto si inserisce questo lavoro di tesi volto allo sviluppo di un approccio alternativo per la discriminazione di diversi ceppi batterici; in particolare, la strategia da noi proposta mira all’utilizzo di nanoparticelle d’oro (AuNPs) per il riconoscimento della parete batterica attraverso una combinazione di interazioni elettrostatiche ed idrofobiche. L'innovazione di tale approccio si basa sulla scelta di introdurre nella libreria di nanoparticelle AuNPs protette da monostrati misti, composti da miscele di ligandi idrogenati (H-) cationici e ligandi fluorurati (F-). La presenza di quest’ultimi permette di modulare l'idrofobicità della superficie esterna delle AuNPs, fornendo un ulteriore meccanismo di riconoscimento. La prima parte del progetto è stata quindi incentrata sulla progettazione e preparazione della libreria di AuNPs cationiche omoleganti ed eteroleganti. Per entrambe le tipologie di nanoparticelle le cariche positive sono fornite da leganti idrogenato contenenti come gruppo di testa uno ione ammonio quaternario, che consente interazioni elettrostatiche non specifiche con gli elementi carichi negativamente presenti sulla membrana batterica esterna. D'altra parte, sono state preparate diverse nanoparticelle eteroleganti utilizzando miscele con diverso rapporto tra leganti idrogenati e fluorurati capaci, comunque, di produrre nanoparticelle solubili in soluzione acquose. Una volta caratterizzate le AuNPs, le attività di ricerca sono state focalizzate allo sviluppo di un meccanismo di trasduzione capace di segnalare l’associazione AuNPs/batteri. A tal scopo, si è deciso di sfruttare la proprietà di quenching fi fluorescenza delle AuNPs nei confronti di numerosi fluorofori, testandone l’efficienza rispetto a due fluorofori organici a basso peso molecolare (carbossifluoresceina e piranina) e ad un polimero fluorescente anionico (PPP-OSO3) mediante titolazioni di fluorescenza. I risultati di questi esperimenti hanno evidenziato la maggiore efficacia di quenching nei confronti del polimero PPP-OSO3 da parte di tutte le nanoparticelle della libreria. La potenziale capacità delle AuNPs di legare la parete batterica attraverso una combinazione di interazioni elettrostatiche ed idrofobiche, e la possibilità che questa interazione potesse essere evidenziata mediante la variazione delle proprietà di fluorescenza del PPP-OSO3, sono state valutate ricorrendo a dei sistemi modello. A tal fine sono stati preparati due diversi liposomi anionici a diversa densità di cariche negative, composti rispettivamente dal lipide anionico POPG e da una miscela di POPG e il lipide zwitterionico POPC. Le titolazioni di fluorescenza ottenute aggiungendo quantità crescenti di PPP-OSO3 a soluzioni contenenti il liposoma in esame e ciascun membro della libreria di nanoparticelle hanno consentito di evidenziare una generale riduzione del quenching. L’interazione del sistema AuNPs/ PPP-OSO3 con diversi ceppi batterici è stata studiata, in modo preliminare utilizzando quattro ceppi batterici. I risultati ottenuti hanno permesso di evidenziare che la libreria di AuNPs utilizzata in questi esperimenti è in grado di generare profili di fluorescenza significativamente differenti a seconda di quale ceppo batterico viene considerato, consentendo la distinzione su base qualitativa. Contemporaneamente allo studio delle interazioni AuNPs/PPP-OSO3, una seconda parte del progetto si è concentrata sullo sviluppo di un nuovo tipo di nanoparticelle d'oro e sulla loro funzionalizzazione con leganti cationici basati su peptidi. Per la preparazione di queste AuNPs decorate da peptidi è stato scelto un approccio innovativo basato sulla reazione di click chemistry nota come ligazione di Staudinger-Bertozzi, al fine di ottimizzare e facilitare la funzionalizzazione delle nanoparticelle con ligandi contenenti porzione peptidiche.

Costrutti fluoroforo-nanoparticella d'oro come sonde di rilevamento per l'identificazione di batteri / Cafiero, CLAUDIA MARIA. - (2023 Sep 21).

Costrutti fluoroforo-nanoparticella d'oro come sonde di rilevamento per l'identificazione di batteri

CAFIERO, CLAUDIA MARIA
2023-09-21

Abstract

This thesis proposes an alternative approach to bacteria detection; our proposed strategy primarily aims at the recognition of negative charges and hydrophobic patterns of the bacterial cell wall by using a library of positively charged gold nanoparticles (AuNPs) interacting non covalently with a specific fluorophore. The innovation of this approach is based on the use of mixed-monolayer AuNPs featuring fluorinated ligands in the protective shell which allow to modulate the hydrophobicity of the AuNPs outer surface providing an additional recognition mechanism. The first part of the project has been focused on the design and preparation of a library of cationic homoligand AuNPs and heteroligand AuNPs bearing hydrogenated (H-) and fluorinated (F-) ligands on their mixed monolayer. For both nanoparticles, the positive charges are provided by the H- ligands possessing a permanent quaternary ammonium group as end-group, which allows no-specific electrostatic interactions with the negatively charged groups present on the bacterial outer membrane. On the other hand, diverse H-/F- ratios have been used to prepare water-soluble heteroligand AuNPs aiming to modulate the hydrophobic properties of the AuNP surface. The development of a transduction mechanism to detect the AuNPs-bacteria recognition event has been carried out, exploiting the peculiar property of the AuNPs to act as a quencher towards numerous fluorophores. For this purpose, the AuNPs quenching efficiency has been tested toward two organic dyes and an anionic fluorescent polymer (PPP-OSO3) by fluorescence titrations, whose results have underlined the higher quenching efficacy of all AuNPs toward PPP-OSO3. Subsequently, the activities have been focused on the interaction studies between the AuNPs-polymer constructs and anionic liposomes, whose purpose is to act as bacterial membrane models. Two different anionic liposomes composed of POPG and a mixture of POPC/POPG have been prepared to achieve different surface charges. By fluorescence titrations of liposome-AuNPs solution with PPP-OSO3, it has been observed that the quenching ability of the cationic AuNPs towards PPP-OSO3 is markedly reduced in the presence of anionic liposomes, indicating an interaction of the nanoparticles with these systems, especially in case of AuNPs bearing fluorinated ligands. Within the time span of this PhD thesis, preliminary biological tests have been to analyse the quenching efficiency of the AuNPs toward PPP-OSO3 in the presence of different bacterial strains encompassing Gram positive, Gram negative and mycobacteria. The second part of the project has been focused on the development of a new type of activated gold nanoparticles (AuNPs) and their functionalization with bio-inspired peptide-based cationic ligands, exploring other synthetic strategies for AuNP preparation. In detail, peptide-decorated AuNPs have been designed to improve the specific-site interactions with the elements present on the bacterial membranes and to increase the diversity in the gold nanoparticles library. For the preparation of these AuNPs, an innovative approach based on the Staudinger-Bertozzi click chemistry reaction has been pursued in order to optimize the AuNP functionalization. The proposed strategy is based on the preparation of activated AuNPs, whose surface is decorated with an appropriately substituted triarylphosphine, and on the synthesis of azide-containing peptides. Both homoligand and heteroligand activated-AuNPs have been synthesised to evaluate and optimize the stability of these systems.
21-set-2023
TECILLA, PAOLO
Pengo, Paolo
35
2021/2022
Settore CHIM/06 - Chimica Organica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
TESIDOTTORATO_CLAUDIAMARIACAFIERO.pdf

accesso aperto

Descrizione: FLUOROPHORE-GOLD NANOPARTICLE CONSTRUCTS AS SENSING PROBES FOR BACTERIA IDENTIFICATION
Tipologia: Tesi di dottorato
Dimensione 12.2 MB
Formato Adobe PDF
12.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3059182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact