Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. However, photonitration triggered by nitrate and nitrite is a very complex process, because the two ionic species under irradiation produce a wide range of nitrating agents (such as (NO2)-N-center dot, HNO2, HOONO, and H2OONO+), which are affected by pH and the presence of organic compounds and, in turn, deeply affect the nitration of aromatic precursors. Moreover, aromatic substrates can highly differ in their reactivity towards the various photogenerated species, thereby providing different behaviours towards photonitration. Despite the high complexity, it is possible to rationalise the different photonitration pathways in a coherent framework. In this context, this review paper has the goal of providing the reader with a guide on what to expect from the photonitration process under different conditions, how to study it, and how to determine which pathway(s) are prevailing in the formation of the observed nitroderivatives.

Secondary Formation of Aromatic Nitroderivatives of Environmental Concern: Photonitration Processes Triggered by the Photolysis of Nitrate and Nitrite Ions in Aqueous Solution

Marussi, Giovanna;
2021-01-01

Abstract

Aromatic nitroderivatives are compounds of considerable environmental concern, because some of them are phytotoxic (especially the nitrophenols, and particularly 2,4-dinitrophenol), others are mutagenic and potentially carcinogenic (e.g., the nitroderivatives of polycyclic aromatic hydrocarbons, such as 1-nitropyrene), and all of them absorb sunlight as components of the brown carbon. The latter has the potential to affect the climatic feedback of atmospheric aerosols. Most nitroderivatives are secondarily formed in the environment and, among their possible formation processes, photonitration upon irradiation of nitrate or nitrite is an important pathway that has periodically gained considerable attention. However, photonitration triggered by nitrate and nitrite is a very complex process, because the two ionic species under irradiation produce a wide range of nitrating agents (such as (NO2)-N-center dot, HNO2, HOONO, and H2OONO+), which are affected by pH and the presence of organic compounds and, in turn, deeply affect the nitration of aromatic precursors. Moreover, aromatic substrates can highly differ in their reactivity towards the various photogenerated species, thereby providing different behaviours towards photonitration. Despite the high complexity, it is possible to rationalise the different photonitration pathways in a coherent framework. In this context, this review paper has the goal of providing the reader with a guide on what to expect from the photonitration process under different conditions, how to study it, and how to determine which pathway(s) are prevailing in the formation of the observed nitroderivatives.
File in questo prodotto:
File Dimensione Formato  
Marussi_Molecules_2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3061958
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact