As a metal-free semiconductor, carbon nitride is a promising material for sustainable photocatalysis. From the large number of studies, it seems apparent that the photocatalytic activity is related to the number and type of defects present in the structure. Many defects are paramagnetic and photoresponsive and, for this reason, Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful method to derive fundamental information on the structure – local, extended and electronic – of such defects which in turn impact the optical, magnetic and chemical properties of a material. This review aims at critically discussing the interpretation of EPR data of native and photoinduced radical defects in carbon nitride research highlighting strengths and limitations of this spectroscopic technique

Photo‐Induced Radicals in Carbon Nitride and their Magnetic Signature

Fornasiero, Paolo;
2023-01-01

Abstract

As a metal-free semiconductor, carbon nitride is a promising material for sustainable photocatalysis. From the large number of studies, it seems apparent that the photocatalytic activity is related to the number and type of defects present in the structure. Many defects are paramagnetic and photoresponsive and, for this reason, Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful method to derive fundamental information on the structure – local, extended and electronic – of such defects which in turn impact the optical, magnetic and chemical properties of a material. This review aims at critically discussing the interpretation of EPR data of native and photoinduced radical defects in carbon nitride research highlighting strengths and limitations of this spectroscopic technique
2023
Pubblicato
File in questo prodotto:
File Dimensione Formato  
ChemPhotoChem - 2023 - Actis - Photo‐Induced Radicals in Carbon Nitride and their Magnetic Signature.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3066685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact