The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible-light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O-3-0.4PbTiO(3) (PMN-PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light-induced variation in the Ni orbital moment as a result of sum-rule analysis of x-ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out-of-plane the PMN-PT substrate, showing a highly anisotropic photostrictive contribution from the in-plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light-induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior.
Visible Light Effects on Photostrictive/Magnetostrictive PMN‐PT/Ni Heterostructure
Deepak DagurWriting – Original Draft Preparation
;
2022-01-01
Abstract
The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible-light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O-3-0.4PbTiO(3) (PMN-PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light-induced variation in the Ni orbital moment as a result of sum-rule analysis of x-ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out-of-plane the PMN-PT substrate, showing a highly anisotropic photostrictive contribution from the in-plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light-induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior.File | Dimensione | Formato | |
---|---|---|---|
Adv Materials Inter - 2022 - Dagur - Visible Light Effects on Photostrictive Magnetostrictive PMN‐PT Ni Heterostructure.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.