Critical behaviour in phase transitions is a resource for enhanced precision metrology. The reason is that the function, known as Fisher information, is superextensive at critical points, and, at the same time, quantifies performances of metrological protocols. Therefore, preparing metrological probes at phase transitions provides enhanced precision in measuring the transition control parameter. We focus on the Lipkin-Meshkov-Glick model that exhibits excited state quantum phase transitions at different magnetic fields. Resting on the model spectral properties, we show broad peaks of the Fisher information, and propose efficient schemes for precision magnetometry. The Lipkin-Meshkov-Glick model was first introduced for superconductivity and for nuclear systems, and recently realised in several condensed matter platforms. The above metrological schemes can be also exploited to measure microscopic properties of systems able to simulate the Lipkin-Meshkov-Glick model.

Precision magnetometry exploiting excited state quantum phase transitions

Qian Wang;Ugo Marzolino
Co-primo
2024-01-01

Abstract

Critical behaviour in phase transitions is a resource for enhanced precision metrology. The reason is that the function, known as Fisher information, is superextensive at critical points, and, at the same time, quantifies performances of metrological protocols. Therefore, preparing metrological probes at phase transitions provides enhanced precision in measuring the transition control parameter. We focus on the Lipkin-Meshkov-Glick model that exhibits excited state quantum phase transitions at different magnetic fields. Resting on the model spectral properties, we show broad peaks of the Fisher information, and propose efficient schemes for precision magnetometry. The Lipkin-Meshkov-Glick model was first introduced for superconductivity and for nuclear systems, and recently realised in several condensed matter platforms. The above metrological schemes can be also exploited to measure microscopic properties of systems able to simulate the Lipkin-Meshkov-Glick model.
File in questo prodotto:
File Dimensione Formato  
SciPost Phys17,043(2024).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3067203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact