The precise identification and differentiation of peri-implant diseases, without the need for intrusive procedures, is crucial for the successful clinical treatment and overall durability of dental implants. This work introduces a novel approach that combines surface-enhanced Raman scattering (SERS) spectroscopy with advanced chemometrics to analyse peri-implant crevicular fluid (PICF) samples. The primary purpose is to offer an unbiased evaluation of implant health. A detailed investigation was performed on PICF samples obtained from a cohort of patients exhibiting different levels of peri-implant health, including those with healthy implants, implants impacted by peri-implantitis, and implants with peri-implant mucositis. The obtained SERS spectra were analysed using canonical-powered partial least squares (CPPLS) to identify unique chemical characteristics associated with each inflammatory state. Significantly, our research findings unveil the presence of a common inflammatory SERS spectral pattern in cases of peri-implantitis and peri-implant mucositis. Furthermore, the SERS-based scores obtained from CPPLS were combined with established clinical scores and subjected to a linear discriminant analysis (LDA) classifier. Repeated double cross-validation was used to validate the method's capacity to discriminate different implant conditions. The integrated approach showcased high sensitivity and specificity and an overall balanced accuracy of 92%, demonstrating its potential to serve as a non-invasive diagnostic tool for real-time implant monitoring and early detection of inflammatory conditions.

Spectroscopic insights into peri-implant mucositis and peri-implantitis: unveiling peri-implant crevicular fluid profiles using surface enhanced Raman scattering

Fornasaro, Stefano
;
Rapani, Antonio;Stacchi, Claudio;Sergo, Valter;Bonifacio, Alois;Di Lenarda, Roberto;Berton, Federico
2024-01-01

Abstract

The precise identification and differentiation of peri-implant diseases, without the need for intrusive procedures, is crucial for the successful clinical treatment and overall durability of dental implants. This work introduces a novel approach that combines surface-enhanced Raman scattering (SERS) spectroscopy with advanced chemometrics to analyse peri-implant crevicular fluid (PICF) samples. The primary purpose is to offer an unbiased evaluation of implant health. A detailed investigation was performed on PICF samples obtained from a cohort of patients exhibiting different levels of peri-implant health, including those with healthy implants, implants impacted by peri-implantitis, and implants with peri-implant mucositis. The obtained SERS spectra were analysed using canonical-powered partial least squares (CPPLS) to identify unique chemical characteristics associated with each inflammatory state. Significantly, our research findings unveil the presence of a common inflammatory SERS spectral pattern in cases of peri-implantitis and peri-implant mucositis. Furthermore, the SERS-based scores obtained from CPPLS were combined with established clinical scores and subjected to a linear discriminant analysis (LDA) classifier. Repeated double cross-validation was used to validate the method's capacity to discriminate different implant conditions. The integrated approach showcased high sensitivity and specificity and an overall balanced accuracy of 92%, demonstrating its potential to serve as a non-invasive diagnostic tool for real-time implant monitoring and early detection of inflammatory conditions.
2024
Pubblicato
https://pubs.rsc.org/en/content/articlelanding/2024/an/d3an01438j
File in questo prodotto:
File Dimensione Formato  
Spectroscopic insights.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 5.2 MB
Formato Adobe PDF
5.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
d3an01438j1.pdf

Accesso chiuso

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3067221
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact