In this paper, we study the Banach space ∞ of the bounded real sequences, and a measure N(a, ) over (R∞ , B∞ ) analogous to the finite-dimensional Gaussian law. The main result of our paper is a change of variables’ formula for the integration, with respect to N(a, ), of the measurable real functions on (E∞, B∞ (E∞)), where E∞ is the separable Banach space of the convergent real sequences. This change of variables is given by some (m, σ) functions, defined over a subset of E∞, with values on E∞, with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.

Infinite-dimensional Gaussian change of variables’ formula

Asci, Claudio
2024-01-01

Abstract

In this paper, we study the Banach space ∞ of the bounded real sequences, and a measure N(a, ) over (R∞ , B∞ ) analogous to the finite-dimensional Gaussian law. The main result of our paper is a change of variables’ formula for the integration, with respect to N(a, ), of the measurable real functions on (E∞, B∞ (E∞)), where E∞ is the separable Banach space of the convergent real sequences. This change of variables is given by some (m, σ) functions, defined over a subset of E∞, with values on E∞, with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.
File in questo prodotto:
File Dimensione Formato  
s11565-024-00490-z.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 682.21 kB
Formato Adobe PDF
682.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3069119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact